Here we present a protocol to assess cardiopulmonary function in awake swine, at rest and during graded treadmill exercise. Chronic instrumentation allows for repeated hemodynamic measurements uninfluenced by cardiodepressive anesthetic agents.
The protocol presented here provides a step-by-step approach for the isolation of cardiac resident macrophages from the sinoatrial node (SAN) and atrioventricular node (AVN) region of mouse hearts.
Here we present a step-by-step protocol for a semiautomated approach to analyze murine long-term electrocardiography (ECG) data for basic ECG parameters and common arrhythmias. Data are obtained by implantable telemetry transmitters in living and awake mice and analyzed using Ponemah and its analysis modules.
Electrocardiogram (ECG) is the key variable to understanding cardiac electrophysiology. Physical exercise has beneficial effects but may also be harmful in the context of cardiovascular diseases. This manuscript provides a method of recording real-time ECG during exercise, which can serve to investigate its effects on cardiac electrophysiology in mice.
We present a protocol for ex vivo cultivation of human ventricular myocardial tissue. It allows for detailed analysis of contraction force and kinetics, as well as the application of pre- and afterload to mimic the in vivo physiological environment more closely.
An Innovative Toolkit to Investigate the Complex Mechanisms of Cardiac Arrhythmias
A detailed protocol for imaging single migrating platelets using RGD-functionalized avidin-biotin tethers with tunable density is provided, revealing that platelets generate enough force to rupture the avidin-biotin bond.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten