Anmelden

Aldehydes and ketones are prepared from alcohols, alkenes, and alkynes via different reaction pathways. Alcohols are the most commonly used substrates for synthesizing aldehydes and ketones. The conversion of alcohol to aldehyde, which involves the oxidation process, depends on the class of the alcohol used and the strength of the oxidizing agent. For instance, primary alcohol will form an aldehyde when treated with a weak oxidizing agent; however, it gets over-oxidized to a carboxylic acid in the presence of a strong oxidizing agent. Hence, a mild oxidant like pyridinium chlorochromate is used to convert primary alcohols to aldehydes.

Similarly, Swern and Dess–Martin oxidations, which employ weaker oxidizing agents, convert primary alcohols to aldehydes. The strength of the oxidizing agent is irrelevant when converting secondary alcohol to a ketone. Both mild and strong oxidants give ketones from secondary alcohols.

Unsaturated hydrocarbons like alkenes undergo an ozonolysis reaction to give aldehydes and ketones. The product formed depends on the substitution present across the double bond in an alkene. A monosubstituted alkene forms formaldehyde and another aldehyde molecule. However, disubstitution gives rise to two cases. A 1,1-disubstituted alkene upon ozonolysis forms a mixture of formaldehyde and ketone, while a 1,2-disubstituted alkene yields a mixture of aldehydes. Both aldehydes and ketones are formed when trisubstituted alkenes undergo ozonolysis, while tetrasubstituted alkenes form ketones exclusively.

Alkynesalso form aldehydes and ketones under hydroboration-oxidation and acid-catalyzed hydration reaction conditions. The hydroboration-oxidation reaction favors anti-Markovnikov’s addition. Hence terminal alkynes form aldehydes, and internal alkynesyield ketones. On the other hand, the acid-catalyzed hydration reaction follows Markonikov’s addition, and thus both terminal and internal alkynes generateketones.

Tags

AlcoholAldehydeKetoneOxidationOzonolysisHydroboration oxidationAcid catalyzed HydrationPrimary AlcoholSecondary AlcoholAlkeneAlkyneSwern OxidationDess Martin Oxidation

Aus Kapitel 12:

article

Now Playing

12.7 : Herstellung von Aldehyden und Ketonen aus Alkoholen, Alkenen und Alkinen

Aldehyde und Ketone

3.3K Ansichten

article

12.1 : Strukturen von Aldehyden und Ketonen

Aldehyde und Ketone

7.5K Ansichten

article

12.2 : IUPAC Nomenklatur der Aldehyde

Aldehyde und Ketone

5.1K Ansichten

article

12.3 : IUPAC Nomenklatur der Ketone

Aldehyde und Ketone

5.2K Ansichten

article

12.4 : Gebräuchliche Bezeichnungen für Aldehyde und Ketone

Aldehyde und Ketone

3.3K Ansichten

article

12.5 : IR und UV-Vis-Spektroskopie von Aldehyden und Ketonen

Aldehyde und Ketone

5.0K Ansichten

article

12.6 : NMR-Spektroskopie und Massenspektrometrie von Aldehyden und Ketonen

Aldehyde und Ketone

3.5K Ansichten

article

12.8 : Herstellung von Aldehyden und Ketonen aus Nitrilen und Carbonsäuren

Aldehyde und Ketone

3.2K Ansichten

article

12.9 : Herstellung von Aldehyden und Ketonen aus Carbonsäurederivaten

Aldehyde und Ketone

2.4K Ansichten

article

12.10 : Nukleophile Addition an die Carbonylgruppe: Genereller Mechanismus

Aldehyde und Ketone

4.5K Ansichten

article

12.11 : Aldehyde und Ketone in Gegenwart von Wasser: Bildung von Hydraten

Aldehyde und Ketone

2.9K Ansichten

article

12.12 : Aldehyde und Ketone in Gegenwart von Alkoholen: Hemiacetal-Bildung

Aldehyde und Ketone

5.1K Ansichten

article

12.13 : Schutzgruppen für Aldehyde und Ketone: Einführung

Aldehyde und Ketone

6.0K Ansichten

article

12.14 : Acetale und Thioacetale als Schutzgruppen für Aldehyde und Ketone

Aldehyde und Ketone

3.8K Ansichten

article

12.15 : Aldehyde und Ketone in Gegenwart von HCN: Überblick über die Bildung von Cyanohydrin

Aldehyde und Ketone

2.5K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten