S'identifier

Aldehydes and ketones are prepared from alcohols, alkenes, and alkynes via different reaction pathways. Alcohols are the most commonly used substrates for synthesizing aldehydes and ketones. The conversion of alcohol to aldehyde, which involves the oxidation process, depends on the class of the alcohol used and the strength of the oxidizing agent. For instance, primary alcohol will form an aldehyde when treated with a weak oxidizing agent; however, it gets over-oxidized to a carboxylic acid in the presence of a strong oxidizing agent. Hence, a mild oxidant like pyridinium chlorochromate is used to convert primary alcohols to aldehydes.

Similarly, Swern and Dess–Martin oxidations, which employ weaker oxidizing agents, convert primary alcohols to aldehydes. The strength of the oxidizing agent is irrelevant when converting secondary alcohol to a ketone. Both mild and strong oxidants give ketones from secondary alcohols.

Unsaturated hydrocarbons like alkenes undergo an ozonolysis reaction to give aldehydes and ketones. The product formed depends on the substitution present across the double bond in an alkene. A monosubstituted alkene forms formaldehyde and another aldehyde molecule. However, disubstitution gives rise to two cases. A 1,1-disubstituted alkene upon ozonolysis forms a mixture of formaldehyde and ketone, while a 1,2-disubstituted alkene yields a mixture of aldehydes. Both aldehydes and ketones are formed when trisubstituted alkenes undergo ozonolysis, while tetrasubstituted alkenes form ketones exclusively.

Alkynesalso form aldehydes and ketones under hydroboration-oxidation and acid-catalyzed hydration reaction conditions. The hydroboration-oxidation reaction favors anti-Markovnikov’s addition. Hence terminal alkynes form aldehydes, and internal alkynesyield ketones. On the other hand, the acid-catalyzed hydration reaction follows Markonikov’s addition, and thus both terminal and internal alkynes generateketones.

Tags

AlcoholAldehydeKetoneOxidationOzonolysisHydroboration oxidationAcid catalyzed HydrationPrimary AlcoholSecondary AlcoholAlkeneAlkyneSwern OxidationDess Martin Oxidation

Du chapitre 12:

article

Now Playing

12.7 : Preparation of Aldehydes and Ketones from Alcohols, Alkenes, and Alkynes

Aldehydes and Ketones

3.3K Vues

article

12.1 : Structures des aldéhydes et des cétones

Aldehydes and Ketones

7.6K Vues

article

12.2 : Nomenclature IUPAC des aldéhydes

Aldehydes and Ketones

5.1K Vues

article

12.3 : Nomenclature IUPAC des cétones

Aldehydes and Ketones

5.2K Vues

article

12.4 : Noms communs des aldéhydes et des cétones

Aldehydes and Ketones

3.3K Vues

article

12.5 : Spectroscopie IR et UV-Vis des aldéhydes et des cétones

Aldehydes and Ketones

5.0K Vues

article

12.6 : Spectroscopie RMN et spectrométrie de masse des aldéhydes et des cétones

Aldehydes and Ketones

3.5K Vues

article

12.8 : Préparation d’aldéhydes et de cétones à partir de nitriles et d’acides carboxyliques

Aldehydes and Ketones

3.3K Vues

article

12.9 : Préparation d’aldéhydes et de cétones à partir de dérivés d’acide carboxylique

Aldehydes and Ketones

2.4K Vues

article

12.10 : Addition nucléophile au groupe carbonyle : mécanisme général

Aldehydes and Ketones

4.6K Vues

article

12.11 : Aldéhydes et cétones avec l’eau : formation d’hydrates

Aldehydes and Ketones

2.9K Vues

article

12.12 : Aldéhydes et cétones avec alcools : formation hémiacétal

Aldehydes and Ketones

5.2K Vues

article

12.13 : Groupes protecteurs des aldéhydes et des cétones : Introduction

Aldehydes and Ketones

6.1K Vues

article

12.14 : Les acétals et les thioacétals en tant que groupes protecteurs des aldéhydes et des cétones

Aldehydes and Ketones

3.8K Vues

article

12.15 : Aldéhydes et cétones avec HCN : Présentation de la formation de cyanhydrine

Aldehydes and Ketones

2.5K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.