Anmelden

As depicted in the figure below, the unsymmetrical ketones can form two possible enolates: less substituted or more substituted enolates. Usually, the thermodynamic enolates are formed from the more substituted α-carbon atom, while the kinetic enolates are formed faster by deprotonation from the less substituted position. The thermodynamic enolates have lower energy, so they are more stable. But the energy required to form kinetic enolates is less.

Figure1

This regioselectivity in enolate formation is essentially an acid-base reaction and is controlled by various factors such as solvent, base, cation, and temperature. Protic solvents and weaker bases favor the formation of thermodynamic enolates, while aprotic solvents and stronger bases favor the kinetic enolates. Thermodynamic enolates are formed at higher temperatures and have longer reaction times because of the higher energy barrier. On the other hand, kinetic enolates are formed at lower temperatures with short reaction times. The conditions favoring thermodynamic enolates encourage a reversible reaction which is not the case with conditions involved for kinetic enolates intermediate.

Tags
Regioselective Enolate FormationThermodynamic EnolatesKinetic EnolatesEnolate StabilitySolvent EffectsBase StrengthTemperature EffectsAcid base ReactionsReversible Vs Irreversible Enolization

Aus Kapitel 15:

article

Now Playing

15.5 : Regioselektive Bildung von Enolaten

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.4K Ansichten

article

15.1 : Reaktivität von Enolen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.8K Ansichten

article

15.2 : Reaktivität von Enolat Ionen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.3K Ansichten

article

15.3 : Arten von Enolen und Enolaten

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.3K Ansichten

article

15.4 : Konventionen des Enolat Mechanismus

α-Kohlenstoffchemie: Enole, Enolate und Enamine

1.9K Ansichten

article

15.6 : Stereochemische Effekte der Enolisierung

α-Kohlenstoffchemie: Enole, Enolate und Enamine

1.9K Ansichten

article

15.7 : Säurekatalysierte α-Halogenierung von Aldehyden und Ketonen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.4K Ansichten

article

15.8 : Basenkatalysierte α-Halogenierung von Aldehyden und Ketonen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.2K Ansichten

article

15.9 : Mehrfache Halogenierung von Methylketonen: Haloform-Reaktion

α-Kohlenstoffchemie: Enole, Enolate und Enamine

1.8K Ansichten

article

15.10 : α-Halogenierung von Carbonsäurederivaten: Überblick

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.1K Ansichten

article

15.11 : α-Bromierung von Carbonsäuren: Hell-Volhard-Zelinsky-Reaktion

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.9K Ansichten

article

15.12 : Reaktionen von α-Halocarbonyl-Verbindungen: Nukleophile Substitution

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.1K Ansichten

article

15.13 : Nitrosierung von Enolen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.3K Ansichten

article

15.14 : Bildung von C-C-Bindungen: Überblick über die Aldolkondensation

α-Kohlenstoffchemie: Enole, Enolate und Enamine

13.2K Ansichten

article

15.15 : Basenkatalysierte Aldoladditionsreaktion

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.9K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten