S'identifier

As depicted in the figure below, the unsymmetrical ketones can form two possible enolates: less substituted or more substituted enolates. Usually, the thermodynamic enolates are formed from the more substituted α-carbon atom, while the kinetic enolates are formed faster by deprotonation from the less substituted position. The thermodynamic enolates have lower energy, so they are more stable. But the energy required to form kinetic enolates is less.

Figure1

This regioselectivity in enolate formation is essentially an acid-base reaction and is controlled by various factors such as solvent, base, cation, and temperature. Protic solvents and weaker bases favor the formation of thermodynamic enolates, while aprotic solvents and stronger bases favor the kinetic enolates. Thermodynamic enolates are formed at higher temperatures and have longer reaction times because of the higher energy barrier. On the other hand, kinetic enolates are formed at lower temperatures with short reaction times. The conditions favoring thermodynamic enolates encourage a reversible reaction which is not the case with conditions involved for kinetic enolates intermediate.

Tags
Regioselective Enolate FormationThermodynamic EnolatesKinetic EnolatesEnolate StabilitySolvent EffectsBase StrengthTemperature EffectsAcid base ReactionsReversible Vs Irreversible Enolization

Du chapitre 15:

article

Now Playing

15.5 : Regioselective Formation of Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Vues

article

15.1 : Réactivité des énols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Vues

article

15.2 : Réactivité des ions énolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Vues

article

15.3 : Types d’énols et d’énolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Vues

article

15.4 : Conventions du mécanisme énologique

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Vues

article

15.6 : Effets stéréochimiques de l’énolisation

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Vues

article

15.7 : α-halogénation d’aldéhydes et de cétones catalysée par un acide

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Vues

article

15.8 : α-halogénation des aldéhydes et des cétones promue par une base

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Vues

article

15.9 : Halogénation multiple des méthylcétones : réaction haloforme

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Vues

article

15.10 : α-halogénation des dérivés de l’acide carboxylique : aperçu

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Vues

article

15.11 : α-bromation des acides carboxyliques : réaction Hell-Volhard-Zelinski

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Vues

article

15.12 : Réactions des composés α-halocarbonyles : substitution nucléophile

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Vues

article

15.13 : Nitrosation des énols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Vues

article

15.14 : Formation de liaisons C-C : aperçu de la condensation Aldol

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.2K Vues

article

15.15 : Réaction d’addition d’aldol catalysée par une base

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.