Anmelden

The divergence and Stokes' theorems are a variation of Green's theorem in a higher dimension. They are also a generalization of the fundamental theorem of calculus. The divergence theorem and Stokes' theorem are in a way similar to each other; The divergence theorem relates to the dot product of a vector, while Stokes' theorem relates to the curl of a vector. Many applications in physics and engineering make use of the divergence and Stokes' theorems, enabling us to write numerous physical laws in both integral form and differential form. Each theorem has an important implication in fluid dynamics and electromagnetism. Through the divergence theorem, a difficult surface integral can be transformed easily into a volume integral, and vice versa. The rate of flow or discharge of any material across a solid surface in a vector field, like electric flow, wind flow, etc., can be determined using the divergence theorem. Similarly, Stokes' theorem can be used to transform a difficult surface integral into an easier line integral, and vice versa. The line integral in itself can be evaluated using a simple surface with a boundary.

Tags
Divergence TheoremStokes TheoremGreen s TheoremFundamental Theorem Of CalculusVector CalculusFluid DynamicsElectromagnetismIntegral FormDifferential FormSurface IntegralVolume IntegralLine IntegralVector Field

Aus Kapitel 2:

article

Now Playing

2.15 : Divergence and Stokes' Theorems

Vectors and Scalars

1.4K Ansichten

article

2.1 : Einführung in die Skalare

Vectors and Scalars

13.7K Ansichten

article

2.2 : Einführung in Vektoren

Vectors and Scalars

13.4K Ansichten

article

2.3 : Vektorkomponenten im kartesischen Koordinatensystem

Vectors and Scalars

18.0K Ansichten

article

2.4 : Polare und zylindrische Koordinaten

Vectors and Scalars

14.1K Ansichten

article

2.5 : Sphärische Koordinaten

Vectors and Scalars

9.7K Ansichten

article

2.6 : Vektoralgebra: Grafische Methode

Vectors and Scalars

11.3K Ansichten

article

2.7 : Vektoralgebra: Methode der Komponenten

Vectors and Scalars

13.3K Ansichten

article

2.8 : Skalares Produkt (Punktprodukt)

Vectors and Scalars

8.0K Ansichten

article

2.9 : Vektorprodukt (Kreuzprodukt)

Vectors and Scalars

9.2K Ansichten

article

2.10 : Scalar und Vector Triple Produkte

Vectors and Scalars

2.2K Ansichten

article

2.11 : Gradienten- und Entf-Operator

Vectors and Scalars

2.4K Ansichten

article

2.12 : Divergenz und Kräuselung

Vectors and Scalars

1.6K Ansichten

article

2.13 : Zweite Ableitungen und Laplace-Operator

Vectors and Scalars

1.1K Ansichten

article

2.14 : Linien-, Flächen- und Volumenintegrale

Vectors and Scalars

2.1K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten