The divergence and Stokes' theorems are a variation of Green's theorem in a higher dimension. They are also a generalization of the fundamental theorem of calculus. The divergence theorem and Stokes' theorem are in a way similar to each other; The divergence theorem relates to the dot product of a vector, while Stokes' theorem relates to the curl of a vector. Many applications in physics and engineering make use of the divergence and Stokes' theorems, enabling us to write numerous physical laws in both integral form and differential form. Each theorem has an important implication in fluid dynamics and electromagnetism. Through the divergence theorem, a difficult surface integral can be transformed easily into a volume integral, and vice versa. The rate of flow or discharge of any material across a solid surface in a vector field, like electric flow, wind flow, etc., can be determined using the divergence theorem. Similarly, Stokes' theorem can be used to transform a difficult surface integral into an easier line integral, and vice versa. The line integral in itself can be evaluated using a simple surface with a boundary.

Tags
Divergence TheoremStokes TheoremGreen s TheoremFundamental Theorem Of CalculusVector CalculusFluid DynamicsElectromagnetismIntegral FormDifferential FormSurface IntegralVolume IntegralLine IntegralVector Field

Dal capitolo 2:

article

Now Playing

2.15 : Divergence and Stokes' Theorems

Vectors and Scalars

1.3K Visualizzazioni

article

2.1 : Introduzione agli scalari

Vectors and Scalars

13.3K Visualizzazioni

article

2.2 : Introduzione ai vettori

Vectors and Scalars

12.9K Visualizzazioni

article

2.3 : Componenti vettoriali nel sistema di coordinate cartesiane

Vectors and Scalars

17.2K Visualizzazioni

article

2.4 : Coordinate polari e cilindriche

Vectors and Scalars

13.8K Visualizzazioni

article

2.5 : Coordinate sferiche

Vectors and Scalars

9.5K Visualizzazioni

article

2.6 : Algebra vettoriale: metodo grafico

Vectors and Scalars

10.9K Visualizzazioni

article

2.7 : Algebra vettoriale: metodo dei componenti

Vectors and Scalars

12.9K Visualizzazioni

article

2.8 : Prodotto scalare (prodotto scalare )

Vectors and Scalars

7.9K Visualizzazioni

article

2.9 : Prodotto vettoriale (prodotto incrociato)

Vectors and Scalars

9.0K Visualizzazioni

article

2.10 : Prodotti Scalari e Tripli Vettoriali

Vectors and Scalars

2.1K Visualizzazioni

article

2.11 : Operatore Gradiente e Del

Vectors and Scalars

2.3K Visualizzazioni

article

2.12 : Divergenza e ricciolo

Vectors and Scalars

1.5K Visualizzazioni

article

2.13 : Derivate seconde e operatore di Laplace

Vectors and Scalars

1.1K Visualizzazioni

article

2.14 : Integrali di linea, superficie e volume

Vectors and Scalars

2.0K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati