Carrier-mediated transport is a pivotal process in drug absorption, particularly for lipid-insoluble drugs, and encompasses facilitated diffusion and active transport. Facilitated diffusion allows drugs to move along their concentration gradient without energy expenditure, while active transport utilizes ATP to drive drug movement against this gradient.

Active transport involves two types of membrane-spanning transporters: uptake and efflux. Uptake transporters are expressed in the small intestine for diverse substances, including amino acids, peptides, hexoses, organic anions, cations, nucleosides, and other nutrients. Among these, the intestinal oligopeptide transporter, PepT1, shows promise for enhancing the intestinal absorption of peptide drugs. Oral proteins are digested in the GI tract to form di- and tripeptides, and PepT1 facilitates the uptake of these peptides into enterocytes. These uptake transporters, located at the brush border and the basolateral membrane, facilitate the efficient absorption of essential nutrients into the body. Additionally, organic anion transporters driven by α-ketoglutarate facilitate the movement of drugs such as pravastatin and atorvastatin into the blood, thus enhancing their absorption.

Efflux transporters are membrane proteins in the gastrointestinal (GI) tract that are strategically located to protect the body from the influx of undesirable compounds. A prime example is MDR1 or P-gp (ABCB1 gene symbol), a member of the ATP-binding cassette (ABC) subfamily and part of the multidrug-resistance-associated proteins. This transporter is critical in pumping drugs out of cells, contributing to treatment resistance in certain cell lines.

P-gp reduces intestinal epithelial cell permeability from the lumen to blood for various lipophilic or cytotoxic drugs. Its expression varies across different parts of the GI tract and other body tissues, with the highest levels in the adrenal medulla. This widespread presence underscores its defensive role in effluxing drugs and other xenobiotics out of different cells and vital organs, making it pivotal in drug resistance, particularly in many cancer cells.

Aus Kapitel 3:

article

Now Playing

3.11 : Carrier-Mediated Transport

Pharmacokinetics: Drug Absorption

141 Ansichten

article

3.1 : Medikamentenverabreichung und Therapiephasen: Überblick

Pharmacokinetics: Drug Absorption

220 Ansichten

article

3.2 : Wirkstoffabsorption: Überblick

Pharmacokinetics: Drug Absorption

297 Ansichten

article

3.3 : Drug Delivery: Überblick

Pharmacokinetics: Drug Absorption

167 Ansichten

article

3.4 : Verabreichung von Medikamenten: Enteraler Weg

Pharmacokinetics: Drug Absorption

170 Ansichten

article

3.5 : Verabreichung von Medikamenten: Parenteraler Weg

Pharmacokinetics: Drug Absorption

163 Ansichten

article

3.6 : Verabreichung von Medikamenten: Verschiedene Wege

Pharmacokinetics: Drug Absorption

138 Ansichten

article

3.7 : Zellmembranen und Wirkstofftransport

Pharmacokinetics: Drug Absorption

135 Ansichten

article

3.8 : Mechanismen der Arzneimittelabsorption: parazellulärer, transzellulärer und vesikulärer Transport

Pharmacokinetics: Drug Absorption

205 Ansichten

article

3.9 : Passive Diffusion: Überblick und Kinetik

Pharmacokinetics: Drug Absorption

164 Ansichten

article

3.10 : Porentransport und Ionenpaartransport

Pharmacokinetics: Drug Absorption

213 Ansichten

article

3.12 : Erleichterte Diffusion

Pharmacokinetics: Drug Absorption

173 Ansichten

article

3.13 : Aktiver Verkehr

Pharmacokinetics: Drug Absorption

239 Ansichten

article

3.14 : Vesikuläre Trasport: Endozytose, Transzytose und Exozytose

Pharmacokinetics: Drug Absorption

347 Ansichten

article

3.15 : Faktoren, die die Aufnahme von Medikamenten beeinflussen: Anatomische Parameter

Pharmacokinetics: Drug Absorption

109 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten