Carrier-mediated transport is a pivotal process in drug absorption, particularly for lipid-insoluble drugs, and encompasses facilitated diffusion and active transport. Facilitated diffusion allows drugs to move along their concentration gradient without energy expenditure, while active transport utilizes ATP to drive drug movement against this gradient.

Active transport involves two types of membrane-spanning transporters: uptake and efflux. Uptake transporters are expressed in the small intestine for diverse substances, including amino acids, peptides, hexoses, organic anions, cations, nucleosides, and other nutrients. Among these, the intestinal oligopeptide transporter, PepT1, shows promise for enhancing the intestinal absorption of peptide drugs. Oral proteins are digested in the GI tract to form di- and tripeptides, and PepT1 facilitates the uptake of these peptides into enterocytes. These uptake transporters, located at the brush border and the basolateral membrane, facilitate the efficient absorption of essential nutrients into the body. Additionally, organic anion transporters driven by α-ketoglutarate facilitate the movement of drugs such as pravastatin and atorvastatin into the blood, thus enhancing their absorption.

Efflux transporters are membrane proteins in the gastrointestinal (GI) tract that are strategically located to protect the body from the influx of undesirable compounds. A prime example is MDR1 or P-gp (ABCB1 gene symbol), a member of the ATP-binding cassette (ABC) subfamily and part of the multidrug-resistance-associated proteins. This transporter is critical in pumping drugs out of cells, contributing to treatment resistance in certain cell lines.

P-gp reduces intestinal epithelial cell permeability from the lumen to blood for various lipophilic or cytotoxic drugs. Its expression varies across different parts of the GI tract and other body tissues, with the highest levels in the adrenal medulla. This widespread presence underscores its defensive role in effluxing drugs and other xenobiotics out of different cells and vital organs, making it pivotal in drug resistance, particularly in many cancer cells.

Du chapitre 3:

article

Now Playing

3.11 : Carrier-Mediated Transport

Pharmacokinetics: Drug Absorption

142 Vues

article

3.1 : Phases d’administration et de traitement des médicaments : aperçu

Pharmacokinetics: Drug Absorption

220 Vues

article

3.2 : Absorption des médicaments : aperçu

Pharmacokinetics: Drug Absorption

298 Vues

article

3.3 : Administration de médicaments : Vue d’ensemble

Pharmacokinetics: Drug Absorption

168 Vues

article

3.4 : Administration du médicament : voie entérale

Pharmacokinetics: Drug Absorption

175 Vues

article

3.5 : Administration de médicaments : voie parentérale

Pharmacokinetics: Drug Absorption

169 Vues

article

3.6 : Livraison de médicaments : Itinéraires divers

Pharmacokinetics: Drug Absorption

145 Vues

article

3.7 : Membranes cellulaires et transport de médicaments

Pharmacokinetics: Drug Absorption

136 Vues

article

3.8 : Mécanismes d’absorption des médicaments : transport paracellulaire, transcellulaire et vésiculaire

Pharmacokinetics: Drug Absorption

212 Vues

article

3.9 : Diffusion passive : vue d’ensemble et cinétique

Pharmacokinetics: Drug Absorption

165 Vues

article

3.10 : Transport des pores et transport des paires d’ions

Pharmacokinetics: Drug Absorption

214 Vues

article

3.12 : Diffusion facilitée

Pharmacokinetics: Drug Absorption

173 Vues

article

3.13 : Transport actif

Pharmacokinetics: Drug Absorption

241 Vues

article

3.14 : Trasport vésiculaire : endocytose, transcytose et exocytose

Pharmacokinetics: Drug Absorption

352 Vues

article

3.15 : Facteurs influençant l’absorption des médicaments : paramètres anatomiques

Pharmacokinetics: Drug Absorption

109 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.