Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Ein Nagetiermodell der Überlastung des linken Herzvolumens durch Mitralregurgitation wird berichtet. Die Mitralregurgitation kontrollierter Schwere wird induziert, indem eine Nadel von definierten Dimensionen in die vordere Packungsbeilage der Mitralklappe, in ein schlagendes Herz, mit Ultraschallführung vorrückt wird.
Mitralregurgitation (MR) ist eine weit verbreitete Herzklappenläsion, die einen Herzumbau verursacht und zu kongestiver Herzinsuffizienz führt. Obwohl die Risiken einer unkorrigierten MR und ihrer schlechten Prognose bekannt sind, sind die Längsveränderungen in Herzfunktion, Struktur und Umbau unvollständig verstanden. Diese Wissenslücke hat unser Verständnis des optimalen Timings für die MR-Korrektur und den Nutzen, den eine frühe oder späte MR-Korrektur auf dem linken Ventrikel haben kann, eingeschränkt. Um die molekularen Mechanismen zu untersuchen, die der linksventrikulären Umgestaltung bei der Einstellung von MR zugrunde liegen, sind Tiermodelle notwendig. Traditionell wurde das Aorto-Kavalen-Fisteln-Modell verwendet, um Eine Volumenüberlastung auszulösen, die sich von klinisch relevanten Läsionen wie MR unterscheidet. MR stellt einen hämodynamischen Stressor mit niedrigem Druckvolumenüberlast dar, der Tiermodelle erfordert, die diesen Zustand imitieren. Dabei beschreiben wir ein Nagetiermodell schwerer MR, bei dem die vordere Packungsbeilage der Mitralklappe der Ratte mit einer 23G-Nadel in einem schlagenden Herzen mit echokardiographischer Bildführung perforiert ist. Die Schwere von MR wird mit der Echokardiographie bewertet und bestätigt, und die Reproduzierbarkeit des Modells wird berichtet.
Mitralregurgitation (MR) ist eine häufige Herzklappenläsion, diagnostiziert in 1,7% der allgemeinen US-Bevölkerung und bei 9% der älteren Bevölkerung älter als 65 Jahre1. In dieser Herzklappenläsion, unsachgemäßer Verschluss der Mitralklappen in Systole, verursacht Regurgitation von Blut aus der linken Herzkammer in den linken Vorhof. MR kann aufgrund verschiedener Ätiologien auftreten; Jedoch werden primäre Läsionen der Mitralklappe (primäre MR) diagnostiziert und häufiger behandelt als sekundäre MR2. Isolierte primäre MR ist oft eine Folge der myxomatorischen Degeneration der Mitralklappe, was zu einer Dehnung der Flugblätter oder Chordae tendineae, oder Bruch einer Chordae, die alle zum Verlust der systolischen Kotaufe der Klappe beitragen.
MR, die aus solchen Ventilläsionen resultiert, erhöht das Blutvolumen, das den linken Ventrikel in jedem Herzschlag füllt, erhöht den diastolischen Wandstress am Ende und sorgt für einen hämodynamischen Stressor, der zu einer Herzanpassung und Umgestaltung anregt. Herzumbau in dieser Läsion ist oft durch signifikante Kammervergrößerunggekennzeichnet 3,4, milde Wandhypertrophie, mit erhaltener kontraktiler Funktion für längere Zeit. Da die Auswurffraktion oft erhalten bleibt, wird die Mr-Korrektur mit chirurgischen oder transkatheteren Mitteln oft verzögert, bis Symptome wie Dyspnoe, Herzinsuffizienz und Arrhythmien auftreten. Unkorrigierte MR ist jedoch mit einem hohen Risiko von kardialen unerwünschten Ereignissen verbunden, obwohl derzeit Kenntnisse über die ultrastrukturellen Veränderungen, die diesen Ereignissen zugrunde liegen, unbekannt sind.
Tiermodelle von MR bieten ein wertvolles Modell, um solche ultrastrukturellen Veränderungen im Herzen zu untersuchen und das Längsprogressionsfortschreiten der Krankheit zu untersuchen. Zuvor, Forscher haben MR bei großen Tieren wie Schweinen, Hunden und Schafen induziert, indem sie eine externe ventriculo-atrial ehunt5, intradiale Chordal rupture6, oder Packungsbeilage Perforation7. Während chirurgische Techniken bei großen Tieren einfacher sind, beschränkten sich diese Studien auf subchronische Nachbeobachtungen in einer kleinen Stichprobengröße, da solche Studien bei großen Tieren hohe Kosten verursachten. Darüber hinaus ist die molekulare Analyse von Gewebe aus diesen Modellen aufgrund begrenzter artspezifischer Antikörper und anmerkungsbedingter Genombibliotheken für die Ausrichtung oft eine Herausforderung.
Kleine Tiermodelle von MR können eine geeignete Alternative bieten, um diese Ventilläsion und ihre Auswirkungen auf den Herzumbau zu untersuchen. Historisch wurde das Rattenmodell der Aorto-Kavallerie-Fisteln (ACF) der Kardialvolumenüberlastung verwendet. Erstmals 1973 von Stumpe et al.8beschrieben, wird eine arterio-venöse Fistel chirurgisch geschaffen, um Hochdruckarterienblut von der absteigenden Aorta in die untere Vena cava mit niedrigem Druck zu umgehen. Die hohe Durchflussrate in der Fistel induziert eine drastische Volumenüberlastung auf beiden Seiten des Herzens, was zu einer signifikanten rechten und linken ventrikulären Hypertrophie und Dysfunktion führt, die innerhalb von Tagen nach der Erstellung des ACF9auftritt. Trotz seines Erfolgs imitiert ACF nicht die Hämodynamik von MR, einer Niederdruck-Volumenüberlastung, die die Vorspannung erhöht, aber auch die Nachlast reduziert. Aufgrund dieser Einschränkungen des ACF-Modells haben wir versucht, ein MR-Modell zu entwickeln und zu charakterisieren, das die Niederdruck-Volumenüberlastung besser nachahmt.
Hierin beschreiben wir das Protokoll für ein Modell der Mitralklappenpunktion, um schwere MR bei Ratten zu schaffen10,11. Eine hypodermische Nadel wurde in das schlagende Rattenherz eingeführt und gelangte unter echokardiographischer Führung in die vordere Mitralklappenbroschüre. Die Technik ist sehr reproduzierbar und ein relativ gutes Modell, das MR nachahmt, wie es bei Patienten zu beobachten ist. Der Schweregrad des MR wird durch die Größe der Nadel gesteuert, die zur Perforation der Mitralpackung verwendet wird, und die Schwere der MR kann mit der transösophagealen Echokardiographie (TEE) beurteilt werden.
Die Verfahren wurden vom Animal Care and Use Program an der Emory University unter der Protokollnummer EM63Rr, Zulassungsdatum 06/06/2017, genehmigt.
1. Prächirurgische Präparation
2. Tierzubereitung
HINWEIS: Erwachsene Sprague-Dawley männliche Ratten mit einem Gewicht von 350-400 g wurden in dieser Studie verwendet. Die chirurgischen Techniken sind auf Wunsch für etwas kleinere oder größere Tiere geeignet.
3. Linke Thorakotomie
4. Echo geführte MR-Prozedur (Abbildung 3 & Abbildung 4)
5. Tierrückgewinnung und postoperative Pflege
6. Validierung des MR-Schweregrads mit Echokardiographie (Abbildung 5)
7. Scheinchirurgie
Machbarkeit und Reproduzierbarkeit
Das vorgeschlagene MR-Modell ist sehr reproduzierbar, wobei ein gut definiertes Loch in der Mitralpackung bei 100% der in dieser Studie verwendeten Ratten erreicht wird. Abbildung 6A zeigt die Richtung der Nadel, wie sie in die Mitralklappe eingeführt wird. Abbildung 6B zeigt ein Loch in der Mitralklappenbroschüre einer repräsentativen Rat...
Es wird ein reproduzierbares Nagetiermodell schwerer MR mit gutem Überleben (93,75% Überleben nach einer Operation) und ohne signifikante postoperative Komplikationen berichtet. Echtzeit-Bildgebung mit transösophagealer Echokardiographie und die Einführung einer Nadel in das schlagende Herz zur Punktion der Mitralbroschüre sind machbar und können gelehrt werden. Schwere MR wurde mit der 23 G Nadelgröße in dieser Studie hergestellt, die nach Belieben mit einer kleineren oder größeren Nadel variiert werden kann. ...
M.P ist Berater von Heart Repair Technologies (HRT), für den er Beratungshonorare erhalten hat. HRT spielte in dieser Studie keine Rolle und stellte auch keine Mittel zur Unterstützung dieser Arbeit bereit.
Diese Arbeit wurde durch Zuschüsse 19PRE34380625 und 14SDG20380081 von der American Heart Association an D finanziert. Corporan bzw. M. Padala gewährt M135145, HL133667 und HL140325 von den National Institutes of Health und M. Padala Infrastrukturfinanzierungen vom Carlyle Fraser Heart Center am Emory University Hospital Midtown.
Name | Company | Catalog Number | Comments |
23G needle | Mckesson | 16-N231 | |
25G needle, 5/8 inch | McKesson | 1031797 | |
4-0 vicryl | Ethicon | J496H | |
6-0 prolene | Ethicon | 8307H | |
70% ethanol | McKesson | 350600 | |
ACE Light Source | Schott | A20500 | |
ACUSON AcuNav Ultrasound probe | Biosense Webster | 10135936 | 8Fr Intracardiac echo probe |
ACUSON PRIME Ultrasound System | Siemens | SC2000 | |
Betadine | McKesson | 1073829 | |
Blunted microdissecting scissors | Roboz | RS5990 | |
Buprenorphine | Patterson Veterinary | 99628 | |
Carprofen | Patterson Veterinary | 7847425 | |
Chest tube (16G angiocath) | Terumo | SR-OX1651CA | |
Disposable Surgical drapes | Med-Vet | SMS40 | |
Electric Razor | Oster | 78400-XXX | |
Gentamycin | Patterson Veterinary | 78057791 | |
Heat lamp with table clamp | Braintree Scientific | HL-1 120V | |
Hemostatic forceps, curved | Roboz | RS7341 | |
Hemostatic forceps, straight | Roboz | RS7110 | |
Induction chamber | Braintree Scientific | EZ-1785 | |
Injection Plug, Cap, Luer Lock | Exel | 26539 | |
Isoflurane | Patterson Veterinary | 6679401725 | |
Mechanical ventilator | Harvard Apparatus | Inspira ASV | |
Microdissecting forceps | Roboz | RS5135 | |
Microdissecting spring scissors | Roboz | RS5603 | |
Needle holder | Roboz | RS6417 | |
No. 15 surgical blade | McKesson | 1642 | |
Non-woven sponges | McKesson | 446036 | |
Otoscope | Welch Allyn | 23862 | |
Oxygen | Airgas Healthcare | UN1072 | |
Pulse Oximeter | Nonin Medical | 2500A VET | |
Retractor, Blunt 4x4 | Roboz | RS6524 | |
Rodent Surgical Monitor | Indus Instruments | 113970 | The integrated platform allows for monitoring of vital signs and surgical warming |
Scale | Salter Brecknell | LPS 150 | |
Scalpel Handle | Roboz | RS9843 | |
Silk suture 3-0 | McKesson | 220263 | |
Small Animal Anesthesia System | Ohio Medical | AKDL03882 | |
Sterile saline (0.9%) | Baxter | 281322 | |
Sugical Mask | McKesson | 188696 | |
Surgical cap | McKesson | 852952 | |
Surgical gloves | McKesson | 854486 | |
Syringe 10mL | McKesson | 1031801 | |
Syringe 1mL | McKesson | 1031817 | |
Ultra-high frequency probe | Fujifilm Visualsonics | MS250 | |
Ultrasound gel | McKesson | 150690 | |
VEVO Ultrasound System | Fujifilm Visualsonics | VEVO 2100 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten