JoVE Logo

Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Dieses Protokoll stellt ein optimiertes Bioassay-System für abgetrennte Blätter vor, um die Wirksamkeit von entomopathogenen Pilzen (EPF) gegen die Senfblattlaus (Lipaphis erysimi (Kalt.)), ein parthenogetisches Insekt, zu bewerten. Die Methode beschreibt den Prozess der Datenerhebung während Petrischalenexperimenten und ermöglicht es den Forschern, die Virulenz von EPF gegen Senfblattläuse und andere parthenogenetische Insekten konsistent zu messen.

Zusammenfassung

Die Senfblattlaus (L. erysimi) ist ein Schädling, der verschiedene Kreuzblütler befällt und Pflanzenviren überträgt. Um eine umweltfreundliche Schädlingsbekämpfung zu erreichen, sind entomopathogene Pilze (EPF) potenzielle mikrobielle Bekämpfungsmittel zur Bekämpfung dieses Schädlings. Daher ist ein Virulenz-Screening von EPF-Isolaten unter Petrischalenbedingungen vor der Feldanwendung notwendig. Die Senfblattlaus ist jedoch ein parthenogenetisches Insekt, was die Datenerfassung bei Petrischalenexperimenten erschwert. Um dieses Problem anzugehen, wurde ein modifiziertes System für Bioassays mit abgetrennten Blättern entwickelt, bei dem ein Mikrosprühgerät verwendet wird, um Konidien auf Blattläuse zu impfen und das Ertrinken zu verhindern, indem das Trocknen an der Luft nach der Sporensuspension erleichtert wird. Das System hielt während des gesamten Beobachtungszeitraums eine hohe relative Luftfeuchtigkeit aufrecht, und die Blattscheibe blieb über zehn Tage frisch, was eine parthenogenetische Vermehrung der Blattläuse ermöglichte. Um die Ansammlung von Nachkommen zu verhindern, wurde ein tägliches Entfernen mit einem Pinsel eingeführt. Dieses Protokoll demonstriert ein stabiles System zur Bewertung der Virulenz von EPF-Isolaten gegen Senfblattläuse oder andere Blattläuse, das die Auswahl potenzieller Isolate zur Blattlausbekämpfung ermöglicht.

Einleitung

Die Senfblattlaus (L. erysimi) ist ein berüchtigter Schädling, der eine Vielzahl von Kreuzblütlern befällt und erhebliche wirtschaftliche Verluste verursacht1. Während mehrere systematische Insektizide zur Bekämpfung des Blattlausbefalls empfohlen wurden, gibt der häufige Einsatz dieser Insektizide Anlass zur Besorgnis über die Pestizidresistenz 2,3. Im Sinne einer umweltfreundlichen Schädlingsbekämpfung könnten daher entomopathogene Pilze (EPF) als geeignete alternative Bekämpfungsstrategie dienen. EPF ist ein Insektenpathogen mit der Fähigkeit, Wirte zu infizieren, indem es in ihre Kutikula eindringt, was es zu einem wirksamen Mittel zur Bekämpfung von Blattläusen und anderen pflanzensaugenden Insekten macht4. Darüber hinaus hat sich EPF als praktikable und nachhaltige Schädlingsbekämpfungstechnik erwiesen, die Vorteile wie den Antagonismus von Pflanzenpathogenen und die Förderung des Pflanzenwachstums bietet5.

EPF kann durch Insekten-Boden-Köder gewonnen oder aus Insektenkadavern im Feld isoliert werden 6,7. Vor der weiteren Verwendung von Pilzisolaten ist jedoch ein Pathogenitätsscreening erforderlich. Es wurden mehrere Studien zur Wirksamkeit von EPF gegen Blattläuse durchgeführt, bei denen es sich um bedeutende Pflanzenschädlinge handelt, die schwere Schäden verursachen können 8,9. Senfblattläuse wurden unter verschiedenen Arten von Blattläusen auf ihre Anfälligkeit für verschiedene Stämme von Beauveria spp., Metarhizium spp., Lecanicillium spp., Paecilomyces spp. und sogar Alternaria getestet, die in erster Linie als saprophytischer und pflanzenpathogener Pilz bekannt ist, aber einige tödliche Wirkungen gegen Senfblattläuse gezeigt hat10,11,12.

Um die Wirksamkeit von EPF gegen Blattläuse unter Laborbedingungen zu bewerten, können Bioassays in zwei Hauptteile unterteilt werden: die Impfkammer und die Pilzinokulation. Das aktuelle Protokoll beschreibt den Bau einer Impfkammer, in der Blattläuse mit verschiedenen Methoden gepflegt werden können, wie z. B. ein herausgeschnittenes Blatt mit einem Blattstiel, der in feuchte Watte eingewickelt ist, eine herausgeschnittene Blattscheibe mit einer Petrischale, die mit gedämpftem Filterpapier ausgekleidet ist, die direkte Pflege an Topfpflanzen oder eine herausgeschnittene Blattscheibe, die in Wasseragar eingebettet ist, in einer Petrischale oder einem Behälter10, 11,13. Gängige Methoden zur Pilzinokulation sind das Besprühen von Konidien, das Eintauchen von Blattläusen in eine Konidiensuspension, das Eintauchen von Blättern in eine Konidiensuspension und die Endophytenimpfung von Pflanzen11,14,15,16. Es gibt zwar verschiedene Inokulationsmethoden, aber die Bioassays sollen die Bedingungen der Feldanwendung simulieren. Zum Beispiel kann im Fall der in Blätter getauchten Methode12,17 die Wirksamkeit von EPF bewertet werden, aber da die Blattläuse die pilzbeladenen Blätter befallen, wird die dorsale Seite der Blattlaus, die eine bevorzugte Penetrationsstelle ist, dem Pilz normalerweise nicht ausgesetzt.

Um die aphidizide Wirkung von EPF unter Laborbedingungen zu bewerten, schlägt dieses Protokoll die Verwendung der von Yokomi und Gottwald18 beschriebenen Methode mit abgetrennten Blättern mit einigen Modifikationen vor, gefolgt von einer Konidieninokulation mit einem Mikrosprühgerät. Bei dieser Methode wird die Luftfeuchtigkeit in der Bioassay-Kammer mindestens sieben Tage lang auf etwa 100 % gehalten, ohne dass zusätzliches Wasser nachgefüllt werden muss18,19. Darüber hinaus stellt die Beschränkung von Blattläusen auf eine Oberfläche sicher, dass sie dem Besprühen von Konidien ausgesetzt sind, und erleichtert die Beobachtungen20. Blattläuse können jedoch in der exponierten Agaroberfläche stecken bleiben, während sie sich in der Impfkammer bewegen. Darüber hinaus kann die Datenerfassung im Petrischalen-Experiment mit Senfblattläusen, die zu den parthenogenetischen Insekten gehören, aufgrund ihrer schnellen Entwicklung und Vermehrung eine Herausforderung darstellen. Es ist schwierig, zwischen geimpften Erwachsenen und ihren Nachkommen zu unterscheiden, ohne sie zu entfernen. Die Details, wie mit diesem Schritt vorzugehen ist, werden selten erwähnt, und einige inkonsistente Faktoren, wie z. B. die Blattverzehrfläche, müssen optimiert werden.

Dieses Protokoll demonstriert ein stabiles System für das Screening der Virulenz von EPF-Isolaten gegen Senfblattläuse, das die Auswahl potenzieller Isolate gegen verschiedene Blattlausarten aus einer umfangreichen EPF-Bibliothek ermöglicht. Im Feld gesammelte Blattläuse können identifiziert werden, und eine ausreichende Laborpopulation von Senfblattläusen kann etabliert werden, um die aphidizide Wirkung verschiedener Pilzisolate mit einer einfachen und praktikablen Methodik mit konsistenten Ergebnissen zu bewerten. Blattläuse haben als Reaktion auf intensive und wiederholte anthropogene Belastungen in Agrarökosystemen mehrere evolutionäre Mechanismen entwickelt, die die Ernährungssicherheit vor Herausforderungen stellen9. Daher könnte diese beschriebene Methode erweitert werden, um potentielle EPF-Isolate gegen verschiedene Blattlausarten zu evaluieren.

Protokoll

HINWEIS: Das vollständige Flussdiagramm ist in Abbildung 1 dargestellt.

1. Sammlung und Pflege von Senfblattläusen

  1. Sammlung von Senfblattläusen
    1. Drehen Sie die Blätter um und prüfen Sie visuell auf Befall von Senfblattläusen auf Kreuzblütlern auf dem Feld.
    2. Zeichnen Sie die Informationen über die Probenahmestelle (z. B. GPS) und die Wirtspflanze(n) auf und bestätigen Sie die Historie der Insektizidanwendungen mit den Landwirten.
    3. Verwenden Sie einen Insektensauger oder einen feinen Malpinsel (siehe Materialtabelle), um etwa 50 Senfblattläuse aus Kreuzblütlern auf dem Feld in ein 50-ml-Zentrifugenröhrchen zu sammeln und die Probe innerhalb von 3 h ins Labor zu bringen.
    4. Bereiten Sie eine provisorische Petrischale mit herausgeschnittenen Kreuzblütlern und wasserinfiltriertem Filterpapier am Boden vor.
    5. Legen Sie die fünf Blattläuse 14 Tage lang bei Raumtemperatur (25 ± 2 °C) bei einer relativen Luftfeuchtigkeit von 70 % und einer Photoperiode von 12:12 h (hell:dunkel) auf die temporäre Petrischale, um sicherzustellen, dass die Blattlaus vor der weiteren Aufzucht frei von natürlichen Feinden sind.
      HINWEIS: Um sicherzustellen, dass im Freiland gesammelte Blattläuse frei von natürlichen Feinden wie parasitoiden Wespen oder entomopathogenen Pilzen sind, ist es wichtig, die Abwesenheit dieser Organismen zu bestätigen, bevor mit der weiteren Aufzucht begonnen wird.
  2. Pflege von Senfblattläusen
    HINWEIS: Um Senfblattläuse zu erhalten, verwenden Sie pestizidfreie (einschließlich Biopestizide) Kreuzblütlerblätter.
    1. Sorgen Sie für einen stabilen und ausreichenden Vorrat an Kreuzblütlern (ca. 25cm2).
      HINWEIS: Besorgen Sie sich die Kreuzblütler entweder auf dem Markt oder ziehen Sie die Pflanzen an. Vor der langfristigen, massiven Aufzucht von Senfblattläusen konnten verschiedene Kreuzblütler getestet werden, um einen geeigneten Kreuzblütler zu finden. Sobald die Art des Kreuzblütlers feststeht, ändern Sie sie nicht mehr. In dieser Studie wurde Komatsuna (Brassica rapa var. perviridis) im 6-7-Blatt-Stadium verwendet (siehe Materialtabelle). Entsorgen Sie zusätzlich die 2-3 ältesten Blätter.
    2. Füge Wasser hinzu, bevor das Filterpapier an der Unterseite vollständig trocken ist.
    3. Beobachten Sie täglich die Populationsdichte der Senfblattläuse. Die Population sollte nach 7 Tagen auf das 2-3-fache anwachsen.
    4. Wenn die Anzahl der Blattläuse zunimmt, schneiden Sie die ursprünglich herausgeschnittenen Blätter mit Senfblattläusen in 4-6 kleinere Stücke und legen Sie jedes kleine Blattstück mit Senfblattläusen in eine Petrischale mit frisch herausgeschnittenen Blättern und wasserinfiltriertem Filterpapier.
    5. Stellen Sie die Petrischale in einen Inkubator bei 25 °C mit einer Photoperiode von 12:12 h (hell:dunkel) und beobachten Sie täglich die Populationsdichte von Senfblattläusen.
    6. Entferne die ursprünglichen herausgeschnittenen Blätter, nachdem die meisten Blattläuse zu frischen, herausgeschnittenen Blättern gewandert sind, bevor die ursprünglichen Blätter verrotten.

2. Molekulare Identifizierung der Senfblattlaus

ANMERKUNG: Um die Spezies der im Feld gesammelten Senfblattläuse zu bestätigen, wurde die molekulare Identifizierung anhand von zwei molekularen Markern durchgeführt: der von Lu et al.21 entworfenen sequenzcharakterisierten amplifizierten Region (SCAR) und der von Lu et al.21 entworfenen Cytochromoxidase-Region (COI) der Senfblattlaus-Cytochromoxidase-Untereinheit 1 (COI).

  1. Extraktion der genomischen DNA von Senfblattläusen
    1. Sammeln Sie etwa 50 Blattläuse in einem 1,5-ml-Zentrifugenröhrchen.
      HINWEIS: Blattläuse, die für die molekulare Identifizierung verwendet werden, sollten Nachkommen einer einzigen Blattlaus sein, und verschiedene Stadien können auch für die DNA-Extraktion im selben Röhrchen zusammengefasst werden.
    2. Homogenisieren Sie die Blattläuse mit einem Pelletstößel und extrahieren Sie die DNA mit dem Gene-Spin Genomic DNA Isolation Kit gemäß den Anweisungen des Herstellers (siehe Materialtabelle).
    3. Die genomische DNA wird mit 50 μl vorgewärmtem nukleasefreiem Wasser eluiert.
  2. PCR-Amplifikation und DNA-Sequenzierung
    1. Amplifikation der Ziel-DNA-Sequenzen aus genomischer DNA von Blattläusen unter Verwendung von PCR Master Mix (2x) mit den Primerpaaren A05LeF/A05LeR und LeCO1F/LeCO1R (Tabelle 1) mit verschiedenen PCR-Programmen21.
      HINWEIS: Die PCR-Reaktion mit einem Gesamtvolumen von 20 μl besteht aus 2 μl genomischem DNA-Template für Blattläuse, 1 μl vorwärts und 1 μl umgekehrten Primern, 10 μl PCR Master Mix (siehe Materialtabelle) und 6 μl ddH2O.
    2. Führen Sie die PCR in einem Thermocycler (siehe Materialtabelle) mit folgendem Programm durch: 94 °C für 5 min, 25 Zyklen von 94 °C für 45 s, 61 °C (für A05LeF/A05LeR) und 58 °C (für LeCO1F/LeCO1R) für 45 s, 72 °C für 1 min, gefolgt von einer letzten Verlängerung von 72 °C für 5 min.
    3. Analysieren Sie das PCR-Produkt durch 1%ige Agarose-Gelelektrophorese, um die Identität der Senfblattlaus zu bestätigen (Abbildung 2).
      HINWEIS: Wenn das Primerpaar A05LeF/A05LeR erfolgreich die richtige Größe des DNA-Fragments amplifiziert, hat es die im Feld gesammelte Blattlaus überzeugend als Senfblattlaus21 identifiziert. Die Primerpaare sind in Tabelle 2 aufgeführt.
    4. Reinigen Sie das PCR-Produkt von Senfblattlaus-COI-Amplikon mit einem handelsüblichen Gel/PCR-Kit gemäß den Anweisungen des Herstellers (siehe Materialtabelle) und sequenzieren Sie das PCR-Produkt mit einem kommerziellen Sequenzierungsdienst.
  3. Sequenzanalyse
    ANMERKUNG: Laut Lu et al.21 handelt es sich bei der DNA-Biegung von A05Le um ein senfblattlausspezifisches DNA-Fragment; Daher muss das A05Le-PCR-Produkt nicht weiter sequenziert werden.
    1. Überprüfen Sie die Lesequalität mit der Chromas-Software (siehe Materialtabelle), nachdem Sie die LeCO1-Sequenz erhalten haben.
    2. Trimmen Sie vor- und nachgelagerte Lesevorgänge mit geringer Qualität, indem Sie eine Fasta-Datei (oder TXT-Datei) öffnen und die Lesevorgänge mit geringer Qualität direkt entfernen.
    3. Übermitteln Sie die gekürzte Sequenz mit Standardparametern an NCBI web BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi.
      HINWEIS: Wenn die Amplikongrößen der A05Le- und LeCO1-Primer-Sets korrekt sind, muss die Sequenzblastensuche in NCBI-Standarddatenbanken theoretisch mit Senfblattläusen übereinstimmen.

3. Herstellung von entomopathogenen Pilzen

HINWEIS: Die in dieser Studie verwendete EPF ist in Tabelle 1 aufgeführt.

  1. Rückgewinnung von EPF aus der Pilzbibliothek
    1. Den konservierten Pilzfond (in 30 % Glycerin suspendierte Konidien) aus dem Gefrierschrank bei -80 °C auftauen.
    2. Eine kleine Menge (ca. 10 μl) der Konidiensuspension auf eine 6 cm 1/4 Sabouraud-Dextrose-Agar-Platte (SDA) (0,75 g Sabouraud-Dextrose-Bouillon mit 1,5 g Agar pro 100 ml ddH2O) geben und mit einem Zellverteiler in einer Laminar-Flow-Haube gleichmäßig verteilen.
    3. Versiegeln Sie die Petrischale mit Paraffinfolie und inkubieren Sie sie 10-14 Tage lang im Dunkeln bei 25 °C.
    4. Rekultivieren Sie die Pilzisolate, indem Sie die Pilzmasse auf eine 1/4 SDA-Platte streichen und die Pilze 10-14 Tage lang in Dunkelheit bei 25 °C inkubieren, bevor Sie die Konidienernten 22.
      HINWEIS: Die Pilzkultur sollte ca. 10 Tage vor der Impfung der Blattläuse verwendet werden. EPF-Kulturen, die älter als 14 Tage sind, werden nicht für den Virulenztest empfohlen.
  2. Herstellung der Konidiensuspension
    1. Kratzen Sie die Konidien von der 10-14 Tage alten Pilzkultur auf einer 1/4 SDA-Platte ab, indem Sie nach Zugabe von 2-3 ml 0,03% Tween 80 eine Impfschleife verwenden (siehe Materialtabelle).
    2. Sammeln Sie die Pilzsuspension in einem Zentrifugenröhrchen.
    3. Die Lösung mit höchster Geschwindigkeit vortexen, die Anzahl der Konidien mit einem Hämozytometer unter einem Lichtmikroskop zählen und die Konzentration der Konidiensuspension auf 108 Konidien/ml einstellen.
    4. Die Konidiensuspension in ein UV-sterilisiertes Mikrosprühgerät überführen.
      HINWEIS: Die Konidienaufhängung wird vor dem Umsetzen erneut vorgewirbelt, da die Konidien dazu neigen, sich auszufällen. Das Mikrosprühgerät sollte vor dem Gebrauch 30 Minuten lang in einer Laminar-Flow-Haube ultravioletter Strahlung ausgesetzt werden.

4. Virulenz-Screening gegen Senfblattlaus

  1. Vorbereitung von frisch geschlüpften Erwachsenen
    1. Bringen Sie apterive (ohne Flügel) und Alate (geflügelte) erwachsene Tiere aus der aufziehenden Petrischale in frisch herausgeschnittene Blätter, um neue Nachkommen gleichen Alters zu reproduzieren. Entfernen Sie die erwachsenen Tiere nach 24 Stunden, um eine Überfüllung zu vermeiden und die Produktion von alierten Nachkommen zu minimieren23,24. In weiteren Experimenten werden nur erwachsene Tiere verwendet.
    2. Ziehen Sie die Nachkommen im adulten Stadium auf und entfernen Sie die Nachkommen, die sich nach 48 Stunden nicht in das adulte Stadium entwickeln (Abbildung 3), um Altersunterschiede zwischen den Blattläusen für das Experiment zu vermeiden. Entfernen Sie außerdem alierte Erwachsene.
  2. Vorbereitung der Impfkammer
    HINWEIS: Es wird empfohlen, zuerst Kreuzblütler mit einem Durchmesser von 9 cm vorzubereiten, damit die Blattscheibe vor dem Erstarren in den Wasseragar eingebettet werden kann.
    1. Reinigen Sie die Kreuzblütler mit Leitungswasser, entfernen Sie Schmutz und Rückstände und alle anderen Gliederfüßer, falls vorhanden.
    2. Wischen Sie überschüssiges Wasser mit einem Papiertuch ab und suchen Sie mit einem Stereomikroskop nach anderen Gliederfüßern auf der Oberfläche der Kreuzblütlerblätter. Entferne alle Gliederfüßer, falls vorhanden.
    3. Schneiden Sie eine Blattscheibe mit einem Durchmesser von 9 cm ab, indem Sie entweder die untere Petrischale direkt auf das Blatt als Form drücken oder eine Schere verwenden.
      HINWEIS: Wenn die Blätter einen Durchmesser von weniger als 9 cm haben, kombinieren Sie ein paar herausgeschnittene Blätter.
    4. Bereiten Sie 1,5%iges Wasseragar für jede Petrischale vor, indem Sie 450 mg Agar (siehe Materialtabelle) in 30 ml ddH2O in der Mikrowelle erhitzen und auflösen.
      HINWEIS: Die Menge von 1,5% Wasseragar kann je nach Versuchsskala angepasst werden.
    5. Gießen Sie 30 ml 1,5%igen Wasseragar in die 9-cm-Petrischale, bevor Sie in der Laminar-Flow-Haube erstarren, und warten Sie dann, bis der Agar auf ~40 °C abgekühlt ist, bis die Oberfläche des Agars halb erstarrt ist.
      HINWEIS: Überprüfen Sie, ob die Oberfläche halb verfestigt ist, indem Sie die Petrischale vorsichtig horizontal schütteln.
    6. Legen Sie die Blattscheibe mit der abaxialen Oberfläche nach oben auf den Wasseragar und betten Sie die Blattscheibe in den Agar ein.
      HINWEIS: Minimieren Sie die Exposition der Agaroberfläche.
    7. Nachdem der Wasseragar vollständig erstarrt ist, schließen Sie den Deckel der Petrischale.
      HINWEIS: Öffnen Sie die Abdeckung zur Wasserverdunstung, wenn sofort viele Tröpfchen auf der Abdeckung kondensieren.
    8. Setze 20 erwachsene Tiere auf die Blattscheibe.
      HINWEIS: Es wird empfohlen, unter einem Stereomikroskop zu operieren, um Schäden an den Mundwerkzeugen zu vermeiden.
  3. EPF-Inokulation und -Beobachtung
    1. Öffnen Sie den Deckel der Impfkammer und sprühen Sie 0,3 ml Konidiensuspension (aus Schritt 3.2) direkt auf die Blattläuse und die Blattscheibe aus etwa 15 cm Höhe über der Blattscheibe.
      HINWEIS: Die Konidiensuspension vor dem Sprühen erneut vortexen. Die Sprühbereiche sollten vor dem Versuch getestet werden, da sie zwischen verschiedenen Sprühgeräten variieren können. In diesem Fall werden 0,3 ml mit 15 cm Abstand empfohlen. Die Sprühfläche sollte die gesamte Blattscheibe bedecken, und eine dünne Schicht Konidiensuspension sollte die Blattscheibe bedecken. Wenn Tröpfchen in stehendes Wasser auf dem Blatt zusammenlaufen, sollte das Impfvolumen verringert werden. Reinigen Sie den Tisch mit 70%igem Ethanol vor der Inokulation und zwischen der Verwendung verschiedener Isolate.
    2. Warten Sie, bis die Konidiensuspension getrocknet ist, und schließen Sie dann den Deckel, um zu verhindern, dass Senfblattläuse ertrinken.
      HINWEIS: Blattläuse streifen während des Experiments selten umher; Trotzdem muss sichergestellt werden, dass die Blattläuse nicht entkommen.
    3. Versiegeln Sie die Impfkammer mit Paraffinfolie, um eine hohe relative Luftfeuchtigkeit aufrechtzuerhalten, und stellen Sie die Impfkammer in einen Inkubator bei 25 °C mit einer Photoperiode von 12:12 h (hell:dunkel).
    4. Öffnen Sie den Deckel der Impfkammer, um die Mortalität unter einem Stereomikroskop alle 12 Stunden für 5 Tage zu zählen.
    5. Wischen Sie den am Bezug haftenden Honigtau mit einem Papiertuch aus und entfernen Sie die neu entstandenen Blattläuse mit einem feinen Malpinsel. Reinigen Sie den Bezug alle 24 Stunden mit Leitungswasser.
      HINWEIS: Der Beobachtungszeitraum kann für verschiedene Arten von Blattläusen je nach Langlebigkeit der erwachsenen Tiere variieren.
    6. Bewahren Sie den Kadaver auf der Blattscheibe auf, um eine erfolgreiche Inokulation zu bestätigen.
  4. Bestätigung der Keimrate der Konidien
    HINWEIS: Dieser Schritt ist optional. Zur paarweisen Bestätigung der Keimrate der Konidien bei der Durchführung des Virulenzscreenings, um die Aktivität der Konidien sicherzustellen.
    1. Tropfen Sie einen Tropfen 5 μl Konidiensuspension auf 1/4 SDA für drei Wiederholungen.
    2. Nach 18 h berechnen Sie die Keimrate mit dem Lichtmikroskop. Zählen Sie mindestens 100 Sporen nach dem Zufallsprinzip in einem einzigen Tröpfchen, um die Keimrate des Pilzes zu bestätigen.
      HINWEIS: Normalerweise sollte die Keimrate der im Experiment verwendeten Isolate höher als 90% sein.

5. Bioassay ausgewählter EPF-Isolate

ANMERKUNG: EPF-Isolate, die eine hohe Virulenz aufwiesen, die aus Schritt 4 ausgewählt wurde, wurden einem Bioassay gegen Senfblattläuse unterzogen, bei dem vier Konzentrationen von Konidiensuspensionen (im Bereich von 104 bis 107 Konidien/ml) verwendet wurden.

  1. Herstellung der Konidiensuspension
    1. Wiederholen Sie Schritt 3.1, um die ausgewählten EPF-Isolate wiederherzustellen.
    2. Wiederholen Sie Schritt 3.2, um vier Konzentrationen der Konidiensuspension herzustellen, einschließlich 104, 10 5, 106 und 107 Konidien/ml.
  2. Vorbereitung von frisch geschlüpften Erwachsenen
    1. Wiederholen Sie Schritt 4.1, um frisch geschlüpfte Erwachsene vorzubereiten.
  3. Vorbereitung der Impfkammer
    1. Wiederholen Sie Schritt 4.1. zur Vorbereitung der Impfkammer.
  4. EPF-Inokulation und -Beobachtung
    1. Wiederholen Sie Schritt 4.3. die EPF-Inokulation und die Beobachtung mit den vier Konzentrationen der Konidiensuspension durchzuführen.

6. Statistische Analyse

  1. Berechnung der korrigierten Mortalität
    1. Berechnen Sie die korrigierte Mortalität mit der Abbott-Formel25, wie unten gezeigt:
      Korrigierte Mortalität (%) = [(MT− M C) × 100 %] / (100−M C)
      MT steht für die Mortalität der Behandlungsgruppe und MC für die Mortalität der Kontrollgruppe.
      HINWEIS: Die Mortalität der Kontrollgruppe sollte nicht höher als 20% sein.
    2. Öffnen Sie die SPSS-Softwareplattform (siehe Materialtabelle), erstellen Sie Variablen wie "Behandlung" und "cor_mor" (die korrigierte Mortalität darstellen) und geben Sie die berechneten Ergebnisse für die Inokulation verschiedener Isolate zum gleichen Zeitpunkt mit der gleichen inokulierten Konzentration ein.
    3. Wählen Sie Analysieren, Mittelwerte und Anteile vergleichen, T-Test mit unabhängigen Stichproben in SPSS für die unabhängige t-Test-Analyse aus.
    4. Geben Sie in SPSS die Behandlung in das Feld "Gruppierungsvariable" und cor_mor in das Feld "Testvariable(n)" ein. Definieren Sie Gruppen nach verschiedenen Pilzisolaten. Drücken Sie OK , um zu analysieren.
  2. Berechnung der medianen letalen Zeit (LT 50) und der medianen letalen Konzentration (LC50)
    1. Öffnen Sie das SPSS, erstellen Sie die Variablen "total", "response" und "duration"/"concentration" und geben Sie das aufgezeichnete Ergebnis in die Tabelle ein.
    2. Wählen Sie Analysieren, Regression, Probit in SPSS, um LT 50 und/oder LC50 zu berechnen.
      HINWEIS: Wenn die kumulative Mortalität 50 % nicht überschreitet, können LT 50 und/oder LC50 nicht geschätzt werden.
    3. Geben Sie die Gesamtsumme in das Feld "Beobachtete Gesamtsumme" ein, die Antwort in das Feld "Antworthäufigkeit", die Dauer/Konzentration in das Feld "Kovariate(n)". Drücken Sie OK , um zu analysieren.
      HINWEIS: Drücken Sie im Allgemeinen auf Optionen und stellen Sie das "Signifikanzniveau für die Verwendung des Heterogenitätsfaktors" auf 0,05 ein.

Ergebnisse

Das vorgestellte Flussdiagramm veranschaulicht den stabilen Zustand der Senfblattläuse von der Feldsammlung bis zum Virulenzscreening. Die Pflege von Blattläusen aus der Feldsammlung sorgte für ein stabiles Wachstum der Blattlauskolonien mit einem ausreichenden Nahrungsangebot. Die im Feld gesammelten Blattläuse wurden durch die Verwendung molekularer Marker, einschließlich PCR-Amplikongröße und LeCO1-Sequenzierung, als Senfblattläuse bestätigt. Das Virulenz-Screening, das mit der Methode der abgetrennten Blätt...

Diskussion

Kreuzblütler, eine Gruppe von Gemüsesorten, sind häufig von mehreren Blattlausarten befallen, darunter Senfblattlaus (L. erysimi) und Kohlblattlaus (Brevicoryne brassicae)26. Beide Arten wurden in Taiwan27 gemeldet, und es ist möglich, dass sie an der Sammelstelle koexistieren. Zur Unterscheidung eng verwandter Blattlausarten wurde in dieser Studie eine molekulare Identifizierungstechnik unter Verwendung eines Multiplex-Primer-Sets21<...

Offenlegungen

Die Autoren erklären, dass bei dieser Arbeit kein Interessenkonflikt besteht.

Danksagungen

Diese Forschung wurde durch 109-2313-B-005 -048 -MY3 vom Ministerium für Wissenschaft und Technologie (MOST) unterstützt.

Materialien

NameCompanyCatalog NumberComments
10 μL Inoculating LoopNEST Scientific718201
100 bp DNA Ladder IIIGeneaidDL007
2x SuperRed PCR Master MixBiotoolsTE-SR01
50 mL centrifuge tubeBioman ScientificET5050-12
6 cm Petri dishAlpha Plus Scientific16021
6 mm insect aspiratorMegaView ScienceBA6001
70 mm filter paper NO.1Toyo Roshi Kaisha
70% ethanol
9 cm Petri dishAlpha Plus Scientific16001
AgarBioman ScientificAGR001.1Microbiology grade
AgaroseBioman ScientificPB1200
BioGreen Safe DNA Gel BufferBioman ScientificSDB001T
ChromasTechnelysium
GeneDoc
GenepHlow Gel/PCR KitGeneaidDFH300https://www.geneaid.com/data/files/1605861013102532959.pdf
Gene-Spin Genomic DNA Isolation KitProtech TechnologyPT-GD112-V3http://www.protech-bio.com/UserFiles/file/Gene-Spin%20Genomic%20DNA%20Kit.pdf
HemocytometerPaul Marienfeld640030
Komatsuna leaves (Brassica rapa var. perviridis)Tai Cheng Farm1-010-300410
Microsprayer
MiniAmp Thermal CyclerThermo Fisher ScientificA37834
Mustard aphid (Lipaphis erysimi)
Painting brushTian Cheng brush company4716608400352
Parafilm MBemisPM-996
Pellet pestleBioman ScientificGT100R
Sabouraud Dextrose BrothHiMediaMH033-500G
SPSS StatisticsIBM
TAE buffer 50xBioman ScientificTAE501000
Tween 80PanReac AppliChem142050.1661

Referenzen

  1. Ghosh, S., Roy, A., Chatterjee, A., Sikdar, S. R. Effect of regional wind circulation and meteorological factors on long-range migration of mustard aphids over indo-gangetic plain. Scientific Reports. 9, 5626 (2019).
  2. Dhillon, M. K., Singh, N., Yadava, D. K. Preventable yield losses and management of mustard aphid, Lipaphis erysimi (Kaltenbach) in different cultivars of Brassica juncea(L.) Czern & Coss. Crop Protection. 161, 106070 (2022).
  3. Huang, F., Hao, Z., Yan, F. Influence of oilseed rape seed treatment with imidacloprid on survival, feeding behavior, and detoxifying enzymes of mustard aphid, lipaphis erysimi. Insects. 10 (5), 144 (2019).
  4. Mannino, M. C., Huarte-Bonnet, C., Davyt-Colo, B., Pedrini, N. Is the insect cuticle the only entry gate for fungal infection? insights into alternative modes of action of entomopathogenic fungi. Journal of Fungi. 5 (2), 33 (2019).
  5. Bamisile, B. S., Akutse, K. S., Siddiqui, J. A., Xu, Y. Model application of entomopathogenic fungi as alternatives to chemical pesticides: prospects, challenges, and insights for next-generation sustainable agriculture. Frontiers in Plant Science. 12, 741804 (2021).
  6. Scorsetti, A. C., Humber, R. A., Garcia, J. J., Lopez Lastra, C. C. Natural occurrence of entomopathogenic fungi (Zygomycetes: Entomophthorales) of aphid (Hemiptera: Aphididae) pests of horticultural crops in Argentina. Biocontrol. 52, 641-655 (2007).
  7. Liu, Y. C., Ni, N. T., Chang, J. C., Li, Y. H., Lee, M. R., Kim, J. S., et al. Isolation and selection of entomopathogenic fungi from soil samples and evaluation of fungal virulence against insect pests. Journal of Visualized Experiments. 175, e62882 (2021).
  8. Francis, F., Fingu-Mabola, J. C., Fekih, I. B. Direct and endophytic effects of fungal entomopathogens for sustainable aphid control: a review. Agriculture. 12 (12), 2081 (2022).
  9. Simon, J., Peccoud, J. Rapid evolution of aphid pests in agricultural environments. Current Opinion in Insect Science. 26, 17-24 (2018).
  10. Ujjan, A. A., Shahzad, S. Use of Entomopathogenic Fungi for the Control of Mustard Aphid (Lipaphis erysimi) on canola (Brassica napus L). Pakistan Journal of Botany. 44 (6), 2081-2086 (2012).
  11. Sajid, M., Bashir, N. H., Batool, Q., Munir, I., Bilal, M., Jamal, M. A., et al. In-vitro evaluation of biopesticides (Beauveria bassiana, Metarhizium anisopliae, Bacillus thuringiensis) against mustard aphid Lipaphis erysimi kalt. (Hemiptera: Aphididae). Journal of Entomology and Zoology Studies. 5 (6), 331-335 (2017).
  12. Paschapur, A. U., Subbanna, A. R. N. S., Singh, A. K., Jeevan, B., Stanley, J., Rajashekara, H., Mishra, K. K., Koti, P. S., Kant, L., Pattanayak, A. Alternaria alternata strain VLH1: a potential entomopathogenic fungus native to North Western Indian Himalayas. Egyptian Journal of Biological Pest Control. 32, 138 (2022).
  13. Miohammed, A. A. Lecanicillium muscarium and Adalia bipunctata combination for the control of black bean aphid, Aphis fabae. Biocontrol. 63, 277-287 (2018).
  14. Thaochan, N., Ngampongsai, A., Prabhakar, C. S., Hu, Q. Beauveria bassiana PSUB01 simultaneously displays biocontrol activity against Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae) and promotes plant growth in Chinese kale under hydroponic growing conditions. Biocontrol Science and Technology. 31 (10), 997-1015 (2021).
  15. Mseddi, J., Farhat-Touzri, D. B., Azzouz, H. Selection and characterization of thermotolerant Beauveria bassiana isolates and with insecticidal activity against the cotton-melon aphid Aphis gossypii (Glover) (Hemiptera: Aphididae). Pest Management Science. 78 (6), 2183-2195 (2022).
  16. Butt, T. M., Ibrahim, L., Clark, S. J., Beckett, A. The germination behaviour of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles. Mycological Research. 99 (8), 945-950 (1995).
  17. Ullah, S., Raza, A. B. M., Alkafafy, M., Sayed, S., Hamid, M. I., Majeed, M. Z., Riaz, M. A., Gaber, N. M., Asim, M. Isolation, identification and virulence of indigenous entomopathogenic fungal strains against the peach-potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), and the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control. 32, 2 (2022).
  18. Yokomi, R. K., Gottwald, T. R. Virulence of Verticillium lecanii Isolates in Aphids Determined by Detached-leaf Bioassay. Journal of Inbertebrate Pathology. 51, 250-258 (1988).
  19. Vu, V. H., Hong, S. I., Kim, K. Selection of entomopathogenic fungi for aphid control. Journal of Bioscience and Bioengineering. 104 (6), 498-505 (2007).
  20. Vandenberg, J. D. Standardized bioassay and screening of beauveria bassiana and paecilomyces fumosoroseus against the russian wheat aphid (homoptera: aphididae). Journal of Economic Entomology. 89 (6), 1418-1423 (1996).
  21. Lu, W. N., Wu, Y. T., Kuo, M. H. Development of species-specific primers for the identification of aphids in Taiwan. Applied Entomology and Zoology. 43 (1), 91-96 (2008).
  22. Liu, Y. C., et al. Isolation and selection of entomopathogenic fungi from soil samples and evaluation of fungal virulence against insect pests. Journal of Visualized Experiments. 175, e62882 (2021).
  23. Menger, J., Beauzay, P., Chirumamilla, A., Dierks, C., Gavloski, J., Glogoza, P., et al. Implementation of a diagnostic-concentration bioassay for detection of susceptibility to pyrethroids in soybean aphid (hemiptera: aphididae). Journal of Economic Entomology. 113 (2), 932-939 (2020).
  24. Zhang, R., Chen, J., Jiang, L., Qiao, G. The genes expression difference between winged and wingless bird cherry-oat aphid Rhopalosiphum padi based on transcriptomic data. Scientific Reports. 9, 4754 (2019).
  25. Abbott, W. S. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 18, 265-267 (1925).
  26. Liu, T. X., Sparks, A. N. . Aphids on Cruciferous Crops: Identification and Management. , 9-11 (2001).
  27. Kuo, M., Chianglin, H. Temperature dependent life table of brevicoryne brassicae (l.)(hemiptera: aphididae) on radish. Formosan Entomologist. 27, 293-302 (2007).
  28. Im, Y., Park, S., Lee, S. Y., Kim, J., Kim, J. J. Early-Stage defense mechanism of the cotton aphid aphis gossypii against infection with the insect-killing fungus beauveria bassiana JEF-544. Frontiers in Immunology. 13, 907088 (2022).
  29. Kim, J. J., Roberts, D. W. The relationship between conidial dose, moulting and insect developmental stage on the susceptibility of cotton aphid, Aphis gossypii, to conidia of Lecanicillium attenuatum, an entomopathogenic fungus. Biocontrol Science and Technology. 22 (3), 319-331 (2012).
  30. Reingold, V., Kottakota, C., Birnbaum, N., Goldenberg, M., Lebedev, G., Ghanim, M., et al. Intraspecies variation ofMetarhiziumbrunneumagainst the green peach aphid,Myzus persicae, provides insight into thecomplexity of disease progression. Pest Management Science. 77, 2557-2567 (2021).
  31. Ortiz-Urquiza, A., Keyhani, N. O. Action on the Surface: entomopathogenic fungi versus the insect cuticle. Insects. 4, 357-374 (2013).
  32. Knodel, J. J., Beauzay, P., Boetel, M., Prochaska, T., Chirumamilla, A. . 2022 North Dakota Field Crop Insect Management Guide. , (2021).
  33. Yeo, H., Pell, J. K., Alderson, P. G., Clark, S. J., Pye, B. J. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Management Science. 59 (2), 156-165 (2003).
  34. Erdos, Z., Chandler, D., Bass, C., Raymond, B. Controlling insecticide resistant clones of the aphid, Myzus persicae, using the entomopathogenic fungus Akanthomyces muscarius: fitness cost of resistance under pathogen challenge. Pest Management Science. 77 (11), 5286-5293 (2021).

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

Aphidizide WirkungEntomopathogene PilzeSenfblattlausLipaphis erysimiumweltfreundliche Sch dlingsbek mpfungmikrobielle Bek mpfungsmittelVirulenzscreeningPetrischalenexperimenteParthenogenetisches InsektBioassays mit abgel sten Bl tternMikrospr herSporensuspensionrelative LuftfeuchtigkeitBeobachtungszeitraumparthenogenetische FortpflanzungNachkommenaufbauVirulenzbewertungEPF Isolate

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten