Evaluating the Heat Transfer of a Spin-and-Chill

Überblick

Source: Michael G. Benton and Kerry M. Dooley, Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA

The Spin-and-Chill uses heat transfer and fluid flow fundamentals to chill beverages from room temperature to 38 °F in as little as 2 min. It would take a refrigerator approximately 240 min and an ice chest approximately 40 min to achieve an equivalent temperature change. This is accomplished Spin and Chill by spinning a can or bottle at up to 500 rpm, which creates little or no foaming.

In this experiment, the efficacy of spinning a cylinder (i.e., soda can) at high speeds to cool a soft drink will be evaluated. Operational parameters, such as rpm and spin time, will be varied to assess their effect on heat transfer, and the heat transfer coefficient will be calculated using a lumped parameter model.

Verfahren

1. Testing the Spin-and-Chill

  1. Fill the aluminum soda can with room temperature water and then record the temperature.
  2. Measure the total weight of the ice being used with the balance, enough to surround the Spin-and-Chill.
  3. Seal the aluminum soda can using a plastic sealing lid and insert the assembly into the Spin-and-Chill.
  4. Activate the Spin-and-Chill. It should run about 2 min at ~ 300 rpm.
  5. Remove the aluminum soda can from the Spin-and-Chill and remo

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ergebnisse

The lumped parameter model is used to determine the heat transfer coefficient, h, for the different experimental conditions. To calculate the efficiency, we first determine the energy transferred as heat into the ice bath from the liquid in the can. If the system were adiabatic (100% efficient), Qwater + Qice = 0. The efficiency is determined by dividing the absolute value of heat released by the water in the can (Qwater) by the heat absorbed by the ice du

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Anwendung und Zusammenfassung

This experiment is designed to assess the ability of the Spin-and-Chill to cool a soft drink at record speeds. The lumped parameter model was used since convection was much more important than conduction (due to the high rate of mixing).

The data collected calls into question the ability of the Spin-and-Chill to cool at warm can of soda to 38 °F in 2 minutes. However, with three sequential uses and a time period of about 6 minutes, the Spin-and-Chill can cool the soft drink to the desired

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Referenzen
  1. Vapor-compression Refrigeration." ChemEngineering - Vapor-compression Refrigeration. N.p., n.d. Web. 01 Dec. 2016.
  2. Bartgis, Catherine, Alexander M. Lebrun, Rhongui Ma, and Liang Zhu. "Determination of Time of Death in Forensic Science via a 3-D Whole Body Heat Transfer Model." Journal of Thermal Biology (2016). Web.
  3. Wemhoff, A.p., and M.v. Frank. "Predictions of Energy Savings in HVAC Systems by Lumped Models." Energy and Buildings 42.10 (2010): 1807-814. Web.
  4. Encyclopedia of Chemical Engineering Equipment." Heat Exchangers - Heat Transfer - MEL Equipment Encyclopedia 4.0. N.p., n.d. Web. 01 Dec. 2016.
Tags
Spin and chillHeat TransferTechnologyEngineering ProcessesConvective Heat TransferCooling EfficiencyModelUnderstandHeat Transfer SituationsExperimentsApplicationsSoda CanReservoir Of IceRotatingRevolutions Per MinuteCooling RateTemperature DistributionFluidWallThin Membrane

pringen zu...

0:07

Overview

1:12

Principles of Spin-and-Chill Operation

4:13

Convective Heat Transfer: Lumped Parameter Model

5:42

Results

7:04

Applications

8:21

Summary

Videos aus dieser Sammlung:

article

Now Playing

Evaluating the Heat Transfer of a Spin-and-Chill

Chemical Engineering

7.3K Ansichten

article

Prüfung der Wärmeübertragungseffizienz eines Rippenrohrwärmetauschers

Chemical Engineering

17.8K Ansichten

article

Ein Tablett mit Trockner, leitfähige und konvektive Wärmeübertragung zu untersuchen

Chemical Engineering

43.7K Ansichten

article

Viskosität von Propylenglykol-Lösungen

Chemical Engineering

32.2K Ansichten

article

Porosimetrie eines Aluminiumsilikatpulvers

Chemical Engineering

9.6K Ansichten

article

Demonstration des Potenzgesetzmodells durch Extrusion

Chemical Engineering

9.9K Ansichten

article

Gas-Absorber

Chemical Engineering

36.4K Ansichten

article

Dampf-Flüssigkeits-Gleichgewicht

Chemical Engineering

87.5K Ansichten

article

Der Einfluss des Rückflussverhältnisses auf die Effizienz der Tray-Destillation

Chemical Engineering

77.2K Ansichten

article

Effizienz der Flüssig-Flüssig-Extraktion

Chemical Engineering

48.1K Ansichten

article

Flüssigphasenreaktor: Inversion von Saccharose

Chemical Engineering

9.6K Ansichten

article

Kristallisation von Salicylsäure durch chemische Modifikation

Chemical Engineering

24.0K Ansichten

article

Einphasen- und Zweiphasenströmung in einem Festbettreaktor

Chemical Engineering

18.8K Ansichten

article

Kinetik der Additionspolymerisation zu Polydimethylsiloxan

Chemical Engineering

16.0K Ansichten

article

Katalytischer Reaktor: Hydrierung von Ethylen

Chemical Engineering

29.9K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten