Das Influenza-Antigen-Mikroarray ermöglicht die gleichzeitige Messung mehrerer Antikörper-Isotypen gegen mehr als 300 Influenzastämme aus einem kleinen Blutprobenvolumen von nur einem Mikroliter. Das Mikroarray ermöglicht eine Messung der Breite der Influenza-Antikörper in der antigenen Landschaft von Influenza-Stämmen mit hohem Durchsatz. Durch die genauere Charakterisierung von Influenza-Antikörpern als bisher möglich kann dieses Mikroarray helfen, festzustellen, warum bestimmte Menschen eine Influenza-Infektion entwickeln und andere nicht.
Die Antigen-Mikroarray-Technik wurde auf 35 verschiedene Krankheitserreger in unserem Labor angewendet, die die Messung von Antikörpern gegen 60.000 Antigen-Targets und von 50.000 Serumproben ermöglichen, die aus Infektionskrankheiten und gesunden Kontrollen weltweit gesammelt wurden. Nachdem wir diese Technik in eigenständigen Workshops gelehrt haben, haben wir festgestellt, dass die Möglichkeit, die Technik visuell zu demonstrieren, entscheidend für ihr Verständnis und ihre Leistung ist. Demonstriert wird das Verfahren von Al Jasinskas und Rafael De Assis, Projektwissenschaftlern aus unserem Labor.
Um Antigene mit einem Mikroarray-Drucker zu drucken, wählen Sie einen Drucker mit Microarray-Spotting-Pins mit geringem Volumen, der die Antigene von einer 384-Well-Quellplatte in den Probenkanal absaugen und die Antigene über direkten Kontakt und Kapillarwirkung auf 16 Pad Nitrocellulose-beschichtete Glasschlitten ablegen kann. Geben Sie in der Drucksoftware die Anzahl der Probenplatten ein, die in der Textbox Anzahl der Platten verwendet werden, und wählen Sie den Plattentyp aus, der für die Analyse verwendet wird. Wählen Sie eine Stiftkonfiguration aus, und legen Sie die Ursprungsversätze auf die Abstände zwischen dem Folienursprung und der Position fest, an der die Druckstifte auf den Folien drucken.
Definieren Sie auf der Registerkarte Array-Design die Größe und Form der Arrays, und wählen Sie die Parameter für die Art und Weise aus, wie die Druckstifte die Samples aufnehmen und verteilen. Konfigurieren Sie die Pin-Reinigungs- und Blotting-Protokolle, und definieren Sie die Reihenfolge, in der die Probenblöcke auf die Folien gedruckt werden. Die Array-Software erstellt eine annotierte Rasterindexdatei, um die Anordnung von Antigenen innerhalb jedes Mikroarrays zu beschreiben.
Nachdem Sie die Drucksoftware mit dem gewünschten Protokoll programmiert haben, starten Sie die Druckauflage. Nach Fertigstellung ungeprüfte Mikroarray-Dias in eine lichtdichte Box in einem Trockenschrank bei Raumtemperatur legen. Um sera für Antikörper auf dem Mikroarray zu sonden, verwenden Sie Clips, um die Mikroarray-Dias-Pad-Seite auf die Sondierungskammern zu befestigen und die Kammern in den Rahmen zu platzieren.
Seien Sie vorsichtig bei der Montage der Dias, da sie leicht gebrochen werden und überprüfen Sie auf Leckagen nach der Rehydrierung. Zerlegen und wieder montieren Sie bei Bedarf die Dias, um Leckagen zu beheben. Rehydrieren Sie die Dias mit 100 Mikrolitergefiltertem Sperrpuffer pro Bohrung und verdünnen Sie die Seren im Verhältnis eins bis 100 in 100 Mikroliter Blockierpuffer pro Probe.
Dann inkubieren Sie die rehydrierten Mikroarray-Dias und die verdünnten Seren für 30 Minuten bei Raumtemperatur und 100 bis 250 Umdrehungen pro Minute auf einem Orbital-Shaker. Verwenden Sie am Ende der Inkubation Pipettenspitzen, die mit einer Vakuumleitung mit einem sekundären Sammelkolben verbunden sind, um den Sperrpuffer aus der Ecke jeder Kammer sorgfältig zu saugen, ohne die Pads zu berühren, und fügen Sie die verdünnten Seren sofort zu den Pads hinzu, ohne die Pads trocknen zu lassen. Legen Sie dann die abgedeckten Rahmen in Schalen mit feuchten Papiertüchern versiegelt, um Feuchtigkeit zu halten und bebrüten die Rahmen über Nacht bei vier Grad Celsius auf einem Schaukelschüttler.
Für quantenpunktkonjugierte Sekundärantikörperbeschriftungen, saugen Sie die Sera sorgfältig an, wie gerade demonstriert, und spülen Sie die Dias mit drei Waschungen in 100 Mikroliter n frischen TTBS-Puffer pro Bohrkörper für jeweils fünf Minuten auf einem Orbital-Shaker. Die Dias werden dann mit einer Mischung aus quantenpunktkonjugierten Sekundärantikörpern inkubiert und dann dreimal gewaschen, wie im Protokoll beschrieben, wobei die gleiche Technik verwendet wird, wie sie gerade gezeigt wurde. Nach dem letzten Waschen die Dias vorsichtig aus den Kammern entfernen und die Dias vorsichtig mit gefiltertem doppeldestilliertem Wasser abspülen und dann jede Rutsche in ein 50-Milliliter-Rohr legen.
Dann trocknen Sie die Dias durch Zentrifugation. Um Bilder der Mikroarray-Dias zu erfassen, schalten Sie zuerst den tragbaren Imager ein und platzieren Sie das zu bebilderte Dia vorsichtig mit dem Gesicht nach unten in den Diahalter in der Bildkammer. Öffnen Sie die Imaging-Software, und wählen Sie unter der Registerkarte Imager konfigurieren die entsprechende Folienkonfiguration aus.
Wählen Sie unter der Registerkarte Bildsteuerung den entsprechenden Fluoreszenzkanal aus und passen Sie die Belichtungs- und Erfassungszeiten in Abhängigkeit von der Reaktivität der sera an. Klicken Sie dann auf Erfassen, um die Bildaufnahme zu starten. Verwenden Sie am Ende der Erfassung die Raster, die an den Fiducial-Markern orientiert sind, um die Array-Spots zu erkennen.
Um die Spotintensität zu messen, laden Sie im Dateiinfo-Bedienfeld die gal-Datei hoch und geben Sie den Ordner an, in dem die Analyseausgabedateien im Abschnitt Analyseoptionen gespeichert werden sollen. Öffnen Sie unter der Registerkarte Bildsteuerung eines der erfassten Bilder, die quantifiziert werden sollen, und wählen Sie automatisch aus. Erstellen Sie im Abschnitt Arrayanalyse eine Fiducial-Vorlage, wie von der Software angewiesen.
Klicken Sie auf Batchanalyse, um den Ordner auszuwählen, der die zu quantifizierenden Bilder enthält, und wählen Sie die treuerstellen Vorlage aus, die gerade erstellt wurde. Die Software analysiert jedes Bild und quantifiziert die Spot-Intensität. Analysieren Sie dann die Rohdaten, um die Antikörperbindung über Antigene und Serumproben hinweg zu vergleichen.
In dieser repräsentativen Studie wurden die sekundären Antikörper verwendet, goat Anti-Human IgG konjugiert mit Quantenpunkt emittiert bei 800 Nanometern und Goat Anti-Human IgA konjugiert mit Quantenpunkt emittierend bei 585 Nanometer für Multiplex-Nachweis von IgG- und IgA-Antikörpern. In der resultierenden Heatmap wurden nur die klinisch relevanten Subtypen mit hoher Darstellung gekennzeichnet, um Platz zu sparen, wobei das Pluszeichen alle verbleibenden Subtypen einer höheren Zahl angibt. Serum IgA und IgG wurden nach ihren Molekularformen und Subtypen Hemagglutinin und Neuraminidase gruppiert.
Um die hohe Spezifität der Hämagglutinin-Kopfgruppenantikörper für die klinischen Subtypen und die hohe Kreuzreaktivität ganzer Hemagglutinin- und triamerisierter ganzer Hemagglutinin-Antikörper unter Einbeziehung der Bestandsregion zu demonstrieren. Influenza-Antikörperreaktionen, die am Mikroarray gemessen werden, können durch traditionelle Techniken bestätigt werden, einschließlich Hemagglutinationshemmung und Mikroneutralisationstests. Diese Technik hat Erkenntnisse über die Subtypspezifität von Antikörpern zur Influenza-Kopfgruppe und die relative Bedeutung von IgA- und IgG-Antikörpern für die Influenzaanfälligkeit hervorgebracht.
Obwohl keines der Materialien extrem gefährlich ist, sollten alle menschlichen Serumproben gemäß den institutionellen Biosicherheitsprotokollen behandelt werden.