A subscription to JoVE is required to view this content. Sign in or start your free trial.
The present protocol describes the whole procedure of analysis for axonal transport. In particular, the calculation of transport velocity, not including the pausing, and the visualization method using open-access software "KYMOMAKER" are shown here.
Neuronal cells are highly polarized cells that stereotypically harbor several dendrites and an axon. The length of an axon necessitates efficient bidirectional transport by motor proteins. Various reports have suggested that defects in axonal transport are associated with neurodegenerative diseases. Also, the mechanism of the coordination of multiple motor proteins has been an attractive topic. Since the axon has uni-directional microtubules, it is easier to determine which motor proteins are involved in the movement. Therefore, understanding the mechanisms underlying the transport of axonal cargo is crucial for uncovering the molecular mechanism of neurodegenerative diseases and the regulation of motor proteins. Here, we introduce the entire process of axonal transport analysis, including the culturing of mouse primary cortical neurons, transfection of plasmids encoding cargo proteins, and directional and velocity analyses without the effect of pauses. Furthermore, the open-access software "KYMOMAKER" is introduced, which enables the generation of a kymograph to highlight transport traces according to their direction and allow easier visualization of axonal transport.
Kinesin family members and cytoplasmic dynein are motor proteins that move along the microtubules in cells to transport their cargo1. Most kinesins move toward the plus end, whereas dynein moves toward the minus end of a microtubule. The functions and mechanisms of cargo transport in the neuronal axon have been investigated extensively. Because of their length, axons require stable long-distance transport to maintain the health of neurons. Defects in the transport of mitochondria, autophagosomes, and vesicles containing amyloid-β protein precursor (APP) have been reported as causes of neurodegenerative diseases2
The experiments were approved by the Animal Studies Committee of Hokkaido University, following the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines. Female C57BL/6J mice (pregnant, 15.5 days) were used for the present study.
1. Preparation of mouse primary cortical cultured neurons
Primary cultured neurons from the E15.5 mouse cortex were cultured in a glass-bottom dish as described. As an example, APP-EGFP, Alcα-EGFP, or Alcβ-EGFP were expressed in the primary cortical neurons. APP and Alcα are known to be transported in the axon by kinesin-12,17. APP associates with kinesin-1 via the adapter protein JIP1 (JNK-interacting protein 1), while Alcα directly binds via its double W-acidic motifs. Alcβ i.......
An analysis method for axonal transport is described, which includes the calculation of segmented velocity and the generation of kymographs. A critical step during the transfection step is maintaining the health of cultured neurons. The transfection method described by Jiang and Chen29 was followed with minor modifications. Gentle mixing of the DNA/CaCl2 solution and 2x HBS increased the efficiency of transfection by reducing the size of the precipitations. To prevent the precipitations.......
This work was supported by KAKENHI (22K15270, Grant-in-Aid for Young Scientists) and the Akiyama Life Science Foundation for YS. We would like to express our gratitude to Dr. Masataka Kinjo and Dr. Akira Kitamura, Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University for providing critical input and expertise that greatly assisted the research. The observation with TIRF microscopy was performed using the instrument installed at the Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University. The Instrument is registered in the Open Facility system managed by the Global Facility Center, Creative Re....
Name | Company | Catalog Number | Comments |
5-Fluoro-2-deoxyuridine | Sigma-Aldrich | F0503 | |
Apo TIRF 100x/1.49 OIL | Nikon | ||
B-27 Supplement (50x), serum free | Thermo fischer scientific | 17504044 | |
Bovine serum albumin | Wako | 013-25773 | |
CalPhos Mammalian Transfection Kit | Takara | 631312 | |
Cell strainer 40 µm Nylon | Falcon | 352340 | |
CoolSNAP HQ | Photometrics | ||
Deoxyribonuclease I | Sigma-Aldrich | DN-25 | |
D-Glucose | Wako | 041-00595 | |
DMEM/Ham’s F-12 | Wako | 042-30555 | |
Dumont No. 7 forceps | Dumont | No.7 | |
Feather surgical blade | Feather | No.11 | |
Feather surgical blade handle | Feather | No. 3 | |
Gentamicin | Wako | 079-02973 | |
Gentamicin Sulfate | Wako | 075-04913 | |
GlutaMAX Supplement | Thermo fischer scientific | 35050061 | |
HEPES | DOJINDO | 342-01375 | |
Horse Serum, heat inactivated | Thermo fischer scientific | 26050088 | |
KCl | Wako | 163-03545 | |
KH2PO4 | Wako | 169-04245 | |
KYMOMAKER | http://www.pharm.hokudai.ac.jp/shinkei/Kymomaker.html | ||
L-15 Medium (Leibovitz) | Sigma-Aldrich | L5520 | |
MetaMorph version 6.2r1Â | Metamorph | ||
Na2HPO4 | Wako | 197-02865 | |
NaCl | Wako | 197-01667 | |
NaHCO3 | Wako | 191-01305 | |
Neurobasal Medium | Thermo fischer scientific | 21103049 | |
Nikon ECLIPSE TE 2000-E | Nikon | ||
Nunc Lab-Tek 8 well Chambered Coverglass | Thermo fischer scientific | 155411 | |
Papain | Worthington | LS003126 | |
Penicillin-Streptomycin (10,000 U/mL) | Thermo Fisher Scientific | 15140122 | |
Poly-L-lysine hydrobromide | Sigma-Aldrich | P2636-500MG | |
Trizma base | Merck | T1194-10PAK | solved with water to make 0.1 M Tris-HCl (pH.8.5) |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved