We used retinal samples from retinectomy for a transcriptomic analysis of retinal detachment. We developed a procedure that allows RNA conservation between the surgical blocks and the laboratory. We standardized a protocol to purify RNA by cesium chloride ultracentrifugation to assure that the purified RNAs are suitable for microarray analysis.
Neural retina of a mouse aged 8 days is on top of a 4% gelatin block. After isolation of the photoreceptor layer (200 µm) by vibratome, the photoreceptors are seeded after mechanical and enzymatic dissociation for culture. The photoreceptor layer can be used for molecular, biochemical analyses or transplantation.
The reconstitution of the transmembrane protein, KvAP, into giant unilamellar vesicles (GUVs) is demonstrated for two dehydration-rehydration methods — electroformation, and gel-assisted swelling. In both methods, small unilamellar vesicles containing the protein are fused together to form GUVs that can then be studied by fluorescence microscopy and patch-clamp electrophysiology.
To investigate the blood-retinal barrier permeability and the inner limiting membrane integrity in animal models of retinal disease, we used several adeno-associated virus (AAV) variants as tools to label retinal neurons and glia. Virus mediated reporter gene expression is then used as an indicator of retinal barrier permeability.
Many proteins in the cell sense and induce membrane curvature. We describe a method to pull membrane nanotubes from lipid vesicles to study the interaction of proteins or any curvature-active molecule with curved membranes in vitro.
The production of specialized retinal cells from pluripotent stem cells is a turning point in the development of stem cell-based therapy for retinal diseases. The present paper describes a simple method for an efficient generation of retinal organoids and retinal pigmented epithelium for basic, translational, and clinical research.
We describe a method to obtain primary cultures of cone photoreceptors from the retina of chicken embryos and its use for high content screening.
ACERCA DE JoVE
Copyright © 2024 MyJoVE Corporation. Todos los derechos reservados