Here we describe the technique of preparing and maintaining compartmented chambers for culturing sensory neurons of the dorsal root ganglia.
In this protocol, we demonstrate the fabrication of a microactuator array of vertically displaced posts on which the technology is based, and how this base technology can be modified to conduct high-throughput mechanically dynamic cell culture in both two-dimensional and three-dimensional culture paradigms.
The fallopian tube (FT) is emerging as an alternative site of origin for serous ovarian carcinoma (SOC). This protocol describes a novel method for the isolation and ex vivo culture of fallopian tube epithelial cells. This system recapitulates the in vivo epithelium and allows the study of SOC pathogenesis.
CRISPR/Cas9 is a robust system to produce disruption of genes and genetic elements. Here we describe a protocol for the efficient creation of genomic deletions in mammalian cell lines using CRISPR/Cas9.
Many types of human brain tumors are localized to specific regions within the brain and are difficult to grow in culture. This protocol addresses the role of tumor microenvironment and investigates new drug treatments by analyzing fluorescent primary brain tumor cells growing in an organotypic mouse brain slice.
We describe a protocol for amplifying retroviral integration sites from the genomic DNA of infected cells, sequencing the amplified virus-host junctions, and then mapping these sequences to a reference genome. We also describe techniques to quantify the distribution of integration sites relative to various genomic annotations using BEDTools.
This protocol provides step-by-step instruction on how to generate parabiotic zebrafish embryos of different genetic backgrounds. When combined with the unparalleled imaging capabilities of the zebrafish embryo, this method provides a uniquely powerful means to investigate cell-autonomous versus non-cell-autonomous functions for candidate genes of interest.
Here, we present a quantitative and scalable protocol to perform targeted small molecule screens for kinase regulators of the naïve-primed pluripotent transition.
Here, we present a protocol to detect tumor somatic mutations in circulating DNA present in patient biological fluids (biofluids). Our droplet digital polymerase chain reaction (dPCR)-based method enables quantification of the tumor mutation allelic frequency (MAF), facilitating a minimally invasive complement to diagnosis and temporal monitoring of tumor response.
The goal of this protocol is to apply an optimized tissue dissociation protocol to a mouse model of spinal cord injury and validate the approach for single cell analysis by flow cytometry.
ATAC-seq is a DNA sequencing method that uses the hyperactive mutant transposase, Tn5, to map changes in chromatin accessibility mediated by transcription factors. ATAC-seq enables the discovery of the molecular mechanisms underlying phenotypic alterations in cancer cells. This protocol outlines optimization procedures for ATAC-seq in epithelial cell types, including cancer cells.
Small Molecule Screening Strategies from Lead Identification to Validation
ACERCA DE JoVE
Copyright © 2024 MyJoVE Corporation. Todos los derechos reservados