Iniciar sesión

The low reactivity in alkanes can be attributed to the non-polar nature of C–C and C–H σ bonds. Alkanes, therefore, were initially termed as “paraffins,” derived from the Latin words: parum, meaning “too little,” and affinis, meaning “affinity.”

Alkanes undergo combustion in the presence of excess oxygen and high-temperature conditions to give carbon dioxide and water. A combustion reaction is the energy source in natural gas, liquified petroleum gas (LPG), fuel oil, gasoline, diesel fuel, and aviation fuel. The energy released during combustion, called the heat of combustion (−ΔH°), helps predict the relative stabilities in alkanes and cycloalkanes.

For straight-chain alkanes, the heat of combustion increases gradually with the sequential addition of a CH2 group. However, in higher alkanes, the heat of combustion decreases with increased branching, suggesting that branched isomers have lower potential energies and have greater stabilities compared to straight chain (linear) alkanes.

In cycloalkanes, the relative stability depends on the strain energy, which is the combined outcome of angular, torsional, and steric strains. The strain energy is determined as the difference between the actual and the predicted heats of combustion. A study of strain energy as a function of ring size reveals that the smallest cycloalkane (C3) exhibits maximum strain due to excessive compression of its bond angles. As the ring size increases, the bond angles approach the ideal value of 109° with cyclohexane (C6) being strain-free. Further strains in higher cycloalkanes (C7 to C9) result from their non-ideal bond angles.

Tags

Combustion EnergyStabilityAlkanesCycloalkanesReactivityNon polar NatureC C BondsC H BondsParaffinsAffinityCombustion ReactionCarbon DioxideWaterHeat Of CombustionRelative StabilitiesStraight chain AlkanesBranchingBranched IsomersPotential EnergiesCycloalkane StabilityStrain EnergyAngular StrainTorsional StrainSteric Strain

Del capítulo 3:

article

Now Playing

3.14 : Combustion Energy: A Measure of Stability in Alkanes and Cycloalkanes

Alcanos y cicloalcanos

6.1K Vistas

article

3.1 : Estructura de los Alcanos

Alcanos y cicloalcanos

26.2K Vistas

article

3.2 : Isómeros Constitucionales de los Alcanos

Alcanos y cicloalcanos

17.3K Vistas

article

3.3 : Nomenclatura de los Alcanos

Alcanos y cicloalcanos

20.5K Vistas

article

3.4 : Propiedades físicas de los Alcanos

Alcanos y cicloalcanos

10.5K Vistas

article

3.5 : Proyecciones de Newman

Alcanos y cicloalcanos

15.8K Vistas

article

3.6 : Conformaciones del Etano y el Propano

Alcanos y cicloalcanos

13.3K Vistas

article

3.7 : Conformaciones del Butano

Alcanos y cicloalcanos

13.4K Vistas

article

3.8 : Cicloalcanos

Alcanos y cicloalcanos

11.8K Vistas

article

3.9 : Conformaciones de los Cicloalcanos

Alcanos y cicloalcanos

11.3K Vistas

article

3.10 : Conformaciones del ciclohexano

Alcanos y cicloalcanos

11.7K Vistas

article

3.11 : Conformación en silla del Ciclohexano

Alcanos y cicloalcanos

13.9K Vistas

article

3.12 : Estabilidad de Ciclohexanos Sustituidos

Alcanos y cicloalcanos

12.1K Vistas

article

3.13 : Ciclohexanos Disustituidos: Isomería cis-trans

Alcanos y cicloalcanos

11.5K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados