Entrar

The low reactivity in alkanes can be attributed to the non-polar nature of C–C and C–H σ bonds. Alkanes, therefore, were initially termed as “paraffins,” derived from the Latin words: parum, meaning “too little,” and affinis, meaning “affinity.”

Alkanes undergo combustion in the presence of excess oxygen and high-temperature conditions to give carbon dioxide and water. A combustion reaction is the energy source in natural gas, liquified petroleum gas (LPG), fuel oil, gasoline, diesel fuel, and aviation fuel. The energy released during combustion, called the heat of combustion (−ΔH°), helps predict the relative stabilities in alkanes and cycloalkanes.

For straight-chain alkanes, the heat of combustion increases gradually with the sequential addition of a CH2 group. However, in higher alkanes, the heat of combustion decreases with increased branching, suggesting that branched isomers have lower potential energies and have greater stabilities compared to straight chain (linear) alkanes.

In cycloalkanes, the relative stability depends on the strain energy, which is the combined outcome of angular, torsional, and steric strains. The strain energy is determined as the difference between the actual and the predicted heats of combustion. A study of strain energy as a function of ring size reveals that the smallest cycloalkane (C3) exhibits maximum strain due to excessive compression of its bond angles. As the ring size increases, the bond angles approach the ideal value of 109° with cyclohexane (C6) being strain-free. Further strains in higher cycloalkanes (C7 to C9) result from their non-ideal bond angles.

Tags

Combustion EnergyStabilityAlkanesCycloalkanesReactivityNon polar NatureC C BondsC H BondsParaffinsAffinityCombustion ReactionCarbon DioxideWaterHeat Of CombustionRelative StabilitiesStraight chain AlkanesBranchingBranched IsomersPotential EnergiesCycloalkane StabilityStrain EnergyAngular StrainTorsional StrainSteric Strain

Do Capítulo 3:

article

Now Playing

3.14 : Energia de Combustão: Uma Medida de Estabilidade em Alcanos e Cicloalcanos

Alcanos e Cicloancanos

6.1K Visualizações

article

3.1 : Estrutura de Alcanos

Alcanos e Cicloancanos

26.2K Visualizações

article

3.2 : Isômeros Constitucionais de Alcanos

Alcanos e Cicloancanos

17.3K Visualizações

article

3.3 : Nomenclatura de Alcanos

Alcanos e Cicloancanos

20.6K Visualizações

article

3.4 : Propriedades Físicas de Alcanos

Alcanos e Cicloancanos

10.5K Visualizações

article

3.5 : Projeções de Newman

Alcanos e Cicloancanos

15.8K Visualizações

article

3.6 : Conformações do Etano e Propano

Alcanos e Cicloancanos

13.3K Visualizações

article

3.7 : Conformações do Butano

Alcanos e Cicloancanos

13.4K Visualizações

article

3.8 : Cicloalcanos

Alcanos e Cicloancanos

11.8K Visualizações

article

3.9 : Conformações de Cicloalcanos

Alcanos e Cicloancanos

11.3K Visualizações

article

3.10 : Conformações do Ciclohexano

Alcanos e Cicloancanos

11.7K Visualizações

article

3.11 : Conformação Cadeira do Ciclohexano

Alcanos e Cicloancanos

13.9K Visualizações

article

3.12 : Estabilidade de Ciclohexanos Substituídos

Alcanos e Cicloancanos

12.1K Visualizações

article

3.13 : Ciclohexanos Dissubstituídos: Isomeria cis-trans

Alcanos e Cicloancanos

11.5K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados