S'identifier

The low reactivity in alkanes can be attributed to the non-polar nature of C–C and C–H σ bonds. Alkanes, therefore, were initially termed as “paraffins,” derived from the Latin words: parum, meaning “too little,” and affinis, meaning “affinity.”

Alkanes undergo combustion in the presence of excess oxygen and high-temperature conditions to give carbon dioxide and water. A combustion reaction is the energy source in natural gas, liquified petroleum gas (LPG), fuel oil, gasoline, diesel fuel, and aviation fuel. The energy released during combustion, called the heat of combustion (−ΔH°), helps predict the relative stabilities in alkanes and cycloalkanes.

For straight-chain alkanes, the heat of combustion increases gradually with the sequential addition of a CH2 group. However, in higher alkanes, the heat of combustion decreases with increased branching, suggesting that branched isomers have lower potential energies and have greater stabilities compared to straight chain (linear) alkanes.

In cycloalkanes, the relative stability depends on the strain energy, which is the combined outcome of angular, torsional, and steric strains. The strain energy is determined as the difference between the actual and the predicted heats of combustion. A study of strain energy as a function of ring size reveals that the smallest cycloalkane (C3) exhibits maximum strain due to excessive compression of its bond angles. As the ring size increases, the bond angles approach the ideal value of 109° with cyclohexane (C6) being strain-free. Further strains in higher cycloalkanes (C7 to C9) result from their non-ideal bond angles.

Tags

Combustion EnergyStabilityAlkanesCycloalkanesReactivityNon polar NatureC C BondsC H BondsParaffinsAffinityCombustion ReactionCarbon DioxideWaterHeat Of CombustionRelative StabilitiesStraight chain AlkanesBranchingBranched IsomersPotential EnergiesCycloalkane StabilityStrain EnergyAngular StrainTorsional StrainSteric Strain

Du chapitre 3:

article

Now Playing

3.14 : Combustion Energy: A Measure of Stability in Alkanes and Cycloalkanes

Alcanes et cycloalcanes

6.1K Vues

article

3.1 : Structure des alcanes

Alcanes et cycloalcanes

26.2K Vues

article

3.2 : Isomères constitutionnels des alcanes

Alcanes et cycloalcanes

17.3K Vues

article

3.3 : Nomenclature des alcanes

Alcanes et cycloalcanes

20.5K Vues

article

3.4 : Propriétés physiques des alcanes

Alcanes et cycloalcanes

10.5K Vues

article

3.5 : Projections de Newman

Alcanes et cycloalcanes

15.8K Vues

article

3.6 : Conformations de l'éthane et du propane

Alcanes et cycloalcanes

13.3K Vues

article

3.7 : Conformations du butane

Alcanes et cycloalcanes

13.4K Vues

article

3.8 : Cycloalcanes

Alcanes et cycloalcanes

11.8K Vues

article

3.9 : Conformations des cycloalcanes

Alcanes et cycloalcanes

11.3K Vues

article

3.10 : Conformations du cyclohexane

Alcanes et cycloalcanes

11.7K Vues

article

3.11 : Conformation chaise du cyclohexane

Alcanes et cycloalcanes

13.9K Vues

article

3.12 : Stabilité des cyclohexanes substitués

Alcanes et cycloalcanes

12.1K Vues

article

3.13 : Cyclohexanes disubstitués : isomérie cis-trans

Alcanes et cycloalcanes

11.5K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.