Accedi

The low reactivity in alkanes can be attributed to the non-polar nature of C–C and C–H σ bonds. Alkanes, therefore, were initially termed as “paraffins,” derived from the Latin words: parum, meaning “too little,” and affinis, meaning “affinity.”

Alkanes undergo combustion in the presence of excess oxygen and high-temperature conditions to give carbon dioxide and water. A combustion reaction is the energy source in natural gas, liquified petroleum gas (LPG), fuel oil, gasoline, diesel fuel, and aviation fuel. The energy released during combustion, called the heat of combustion (−ΔH°), helps predict the relative stabilities in alkanes and cycloalkanes.

For straight-chain alkanes, the heat of combustion increases gradually with the sequential addition of a CH2 group. However, in higher alkanes, the heat of combustion decreases with increased branching, suggesting that branched isomers have lower potential energies and have greater stabilities compared to straight chain (linear) alkanes.

In cycloalkanes, the relative stability depends on the strain energy, which is the combined outcome of angular, torsional, and steric strains. The strain energy is determined as the difference between the actual and the predicted heats of combustion. A study of strain energy as a function of ring size reveals that the smallest cycloalkane (C3) exhibits maximum strain due to excessive compression of its bond angles. As the ring size increases, the bond angles approach the ideal value of 109° with cyclohexane (C6) being strain-free. Further strains in higher cycloalkanes (C7 to C9) result from their non-ideal bond angles.

Tags

Combustion EnergyStabilityAlkanesCycloalkanesReactivityNon polar NatureC C BondsC H BondsParaffinsAffinityCombustion ReactionCarbon DioxideWaterHeat Of CombustionRelative StabilitiesStraight chain AlkanesBranchingBranched IsomersPotential EnergiesCycloalkane StabilityStrain EnergyAngular StrainTorsional StrainSteric Strain

Dal capitolo 3:

article

Now Playing

3.14 : Combustion Energy: A Measure of Stability in Alkanes and Cycloalkanes

Alcani e cicloalcani

6.2K Visualizzazioni

article

3.1 : Struttura degli alcani

Alcani e cicloalcani

26.3K Visualizzazioni

article

3.2 : Isomeri costituzionali degli alcani

Alcani e cicloalcani

17.3K Visualizzazioni

article

3.3 : Nomenclatura degli alcani

Alcani e cicloalcani

20.6K Visualizzazioni

article

3.4 : Proprietà fisiche degli alcani

Alcani e cicloalcani

10.5K Visualizzazioni

article

3.5 : Proiezioni di Newman

Alcani e cicloalcani

15.9K Visualizzazioni

article

3.6 : Conformazioni di etano e propano

Alcani e cicloalcani

13.4K Visualizzazioni

article

3.7 : Conformazioni del butano

Alcani e cicloalcani

13.5K Visualizzazioni

article

3.8 : Cicloalcani

Alcani e cicloalcani

11.8K Visualizzazioni

article

3.9 : Conformazioni dei cicloalcani

Alcani e cicloalcani

11.3K Visualizzazioni

article

3.10 : Conformazioni del cicloesano

Alcani e cicloalcani

11.7K Visualizzazioni

article

3.11 : Conformazione a sedia del cicloesano

Alcani e cicloalcani

14.0K Visualizzazioni

article

3.12 : Stabilità dei cicloesani sostituiti

Alcani e cicloalcani

12.1K Visualizzazioni

article

3.13 : CIcloesani disostituiti: isomeria cis-trans

Alcani e cicloalcani

11.5K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati