로그인

The low reactivity in alkanes can be attributed to the non-polar nature of C–C and C–H σ bonds. Alkanes, therefore, were initially termed as “paraffins,” derived from the Latin words: parum, meaning “too little,” and affinis, meaning “affinity.”

Alkanes undergo combustion in the presence of excess oxygen and high-temperature conditions to give carbon dioxide and water. A combustion reaction is the energy source in natural gas, liquified petroleum gas (LPG), fuel oil, gasoline, diesel fuel, and aviation fuel. The energy released during combustion, called the heat of combustion (−ΔH°), helps predict the relative stabilities in alkanes and cycloalkanes.

For straight-chain alkanes, the heat of combustion increases gradually with the sequential addition of a CH2 group. However, in higher alkanes, the heat of combustion decreases with increased branching, suggesting that branched isomers have lower potential energies and have greater stabilities compared to straight chain (linear) alkanes.

In cycloalkanes, the relative stability depends on the strain energy, which is the combined outcome of angular, torsional, and steric strains. The strain energy is determined as the difference between the actual and the predicted heats of combustion. A study of strain energy as a function of ring size reveals that the smallest cycloalkane (C3) exhibits maximum strain due to excessive compression of its bond angles. As the ring size increases, the bond angles approach the ideal value of 109° with cyclohexane (C6) being strain-free. Further strains in higher cycloalkanes (C7 to C9) result from their non-ideal bond angles.

Tags

Combustion EnergyStabilityAlkanesCycloalkanesReactivityNon polar NatureC C BondsC H BondsParaffinsAffinityCombustion ReactionCarbon DioxideWaterHeat Of CombustionRelative StabilitiesStraight chain AlkanesBranchingBranched IsomersPotential EnergiesCycloalkane StabilityStrain EnergyAngular StrainTorsional StrainSteric Strain

장에서 3:

article

Now Playing

3.14 : Combustion Energy: A Measure of Stability in Alkanes and Cycloalkanes

알케인과 사이클로알케인

6.1K Views

article

3.1 : 알카네의 구조

알케인과 사이클로알케인

26.2K Views

article

3.2 : 알카네의 헌법 이소머스

알케인과 사이클로알케인

17.3K Views

article

3.3 : 알카인의 명칭

알케인과 사이클로알케인

20.5K Views

article

3.4 : 알케인의 물리적 특성

알케인과 사이클로알케인

10.5K Views

article

3.5 : 뉴먼 프로젝션

알케인과 사이클로알케인

15.8K Views

article

3.6 : 에탄과 프로판의 적합성

알케인과 사이클로알케인

13.3K Views

article

3.7 : 부탄의 적합성

알케인과 사이클로알케인

13.4K Views

article

3.8 : 사이클로알카네인

알케인과 사이클로알케인

11.8K Views

article

3.9 : 사이클로알카네인의 적합성

알케인과 사이클로알케인

11.3K Views

article

3.10 : 사이클로헥산의 적합성

알케인과 사이클로알케인

11.7K Views

article

3.11 : 사이클로헥산의 의자 형태

알케인과 사이클로알케인

13.9K Views

article

3.12 : 대체 사이클로헥산의 안정성

알케인과 사이클로알케인

12.1K Views

article

3.13 : 디대체 사이클로헥산: 시스 트랜스 이소머리즘

알케인과 사이클로알케인

11.5K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유