JoVE Logo

Iniciar sesión

33.6 : Plane Electromagnetic Waves II

Consider a plane wavefront traveling in position x-direction with a constant speed. This wavefront can be utilized to obtain the relationship between electric and magnetic fields with the help of Faraday's law.

Equation1

Figure1

To apply Faraday's law, consider a rectangle of width a, as shown in the figure.1, whose area vector is in the positive z-direction. To solve the left-hand side integral in Faraday's law, integrate counterclockwise along the rectangle. The electric field is zero along one of the lengths lying outside the wavefront, while the electric field is perpendicular to the other two length elements. These three sides give no contribution to the integral. Only along one side, the electric field has a non-zero value, and it is parallel to the length. This side contributes to the integral, giving a non-zero value.

Equation2

Since the left side of Faraday's law is non-zero, to satisfy the equation there must be a magnetic field component in the positive z-direction, which can provide a non-zero magnetic flux through the rectangle and hence a non-zero time derivative of magnetic flux. To obtain this value, consider that in time dt, the wave moves a distance c dt. While moving, it sweeps an area equal to ac dt. During this time interval, the magnetic flux through the rectangle increases, giving the rate of change of magnetic flux. This value is substituted in Faraday's law, resulting in a relationship between E and B in terms of the speed of wave propagation in a vacuum.

Equation3

This expression shows that the wave is consistent with Faraday's law only if the wave speed and the magnitudes of the perpendicular vectors are related, as in the above equation.

Tags

Plane Electromagnetic WavesWavefrontElectric FieldsMagnetic FieldsFaraday s LawIntegralMagnetic FluxSpeed Of Wave PropagationRelationship E And BCounterclockwise IntegrationArea VectorTime Derivative Of Magnetic Flux

Del capítulo 33:

article

Now Playing

33.6 : Plane Electromagnetic Waves II

Electromagnetic Waves

3.0K Vistas

article

33.1 : Ondas electromagnéticas

Electromagnetic Waves

8.4K Vistas

article

33.2 : Generación de radiaciones electromagnéticas

Electromagnetic Waves

2.5K Vistas

article

33.3 : El espectro electromagnético

Electromagnetic Waves

14.7K Vistas

article

33.4 : Ecuación de onda electromagnética

Electromagnetic Waves

945 Vistas

article

33.5 : Ondas Electromagnéticas Planas: I

Electromagnetic Waves

3.6K Vistas

article

33.7 : Velocidad de propagación de las ondas electromagnéticas

Electromagnetic Waves

3.3K Vistas

article

33.8 : Ondas electromagnéticas en la materia

Electromagnetic Waves

2.9K Vistas

article

33.9 : Energía transportada por las ondas electromagnéticas

Electromagnetic Waves

2.8K Vistas

article

33.10 : Intensidad de las ondas electromagnéticas

Electromagnetic Waves

4.3K Vistas

article

33.11 : Momento y presión de radiación

Electromagnetic Waves

1.9K Vistas

article

33.12 : Presión de radiación: resolución de problemas

Electromagnetic Waves

294 Vistas

article

33.13 : Ondas electromagnéticas estacionarias

Electromagnetic Waves

1.4K Vistas

article

33.14 : Olas estacionarias en una cavidad

Electromagnetic Waves

835 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados