サインイン

Consider a plane wavefront traveling in position x-direction with a constant speed. This wavefront can be utilized to obtain the relationship between electric and magnetic fields with the help of Faraday's law.

Equation1

Figure1

To apply Faraday's law, consider a rectangle of width a, as shown in the figure.1, whose area vector is in the positive z-direction. To solve the left-hand side integral in Faraday's law, integrate counterclockwise along the rectangle. The electric field is zero along one of the lengths lying outside the wavefront, while the electric field is perpendicular to the other two length elements. These three sides give no contribution to the integral. Only along one side, the electric field has a non-zero value, and it is parallel to the length. This side contributes to the integral, giving a non-zero value.

Equation2

Since the left side of Faraday's law is non-zero, to satisfy the equation there must be a magnetic field component in the positive z-direction, which can provide a non-zero magnetic flux through the rectangle and hence a non-zero time derivative of magnetic flux. To obtain this value, consider that in time dt, the wave moves a distance c dt. While moving, it sweeps an area equal to ac dt. During this time interval, the magnetic flux through the rectangle increases, giving the rate of change of magnetic flux. This value is substituted in Faraday's law, resulting in a relationship between E and B in terms of the speed of wave propagation in a vacuum.

Equation3

This expression shows that the wave is consistent with Faraday's law only if the wave speed and the magnitudes of the perpendicular vectors are related, as in the above equation.

タグ
Plane Electromagnetic WavesWavefrontElectric FieldsMagnetic FieldsFaraday s LawIntegralMagnetic FluxSpeed Of Wave PropagationRelationship E And BCounterclockwise IntegrationArea VectorTime Derivative Of Magnetic Flux

章から 33:

article

Now Playing

33.6 : Plane Electromagnetic Waves II

電磁波

3.0K 閲覧数

article

33.1 : 電磁波

電磁波

8.3K 閲覧数

article

33.2 : 電磁放射の発生

電磁波

2.3K 閲覧数

article

33.3 : 電磁スペクトル

電磁波

13.4K 閲覧数

article

33.4 : 電磁波方程式

電磁波

897 閲覧数

article

33.5 : 平面電磁波I.

電磁波

3.5K 閲覧数

article

33.7 : 電磁波の伝搬速度

電磁波

3.3K 閲覧数

article

33.8 : 物質中の電磁波

電磁波

2.9K 閲覧数

article

33.9 : 電磁波によって運ばれるエネルギー

電磁波

2.7K 閲覧数

article

33.10 : 電磁波の強度

電磁波

4.2K 閲覧数

article

33.11 : 運動量と放射圧

電磁波

1.8K 閲覧数

article

33.12 : 放射線圧:問題解決

電磁波

258 閲覧数

article

33.13 : 定在電磁波

電磁波

1.3K 閲覧数

article

33.14 : キャビティ内の定在波

電磁波

779 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved