JoVE Logo

Anmelden

33.6 : Plane Electromagnetic Waves II

Consider a plane wavefront traveling in position x-direction with a constant speed. This wavefront can be utilized to obtain the relationship between electric and magnetic fields with the help of Faraday's law.

Equation1

Figure1

To apply Faraday's law, consider a rectangle of width a, as shown in the figure.1, whose area vector is in the positive z-direction. To solve the left-hand side integral in Faraday's law, integrate counterclockwise along the rectangle. The electric field is zero along one of the lengths lying outside the wavefront, while the electric field is perpendicular to the other two length elements. These three sides give no contribution to the integral. Only along one side, the electric field has a non-zero value, and it is parallel to the length. This side contributes to the integral, giving a non-zero value.

Equation2

Since the left side of Faraday's law is non-zero, to satisfy the equation there must be a magnetic field component in the positive z-direction, which can provide a non-zero magnetic flux through the rectangle and hence a non-zero time derivative of magnetic flux. To obtain this value, consider that in time dt, the wave moves a distance c dt. While moving, it sweeps an area equal to ac dt. During this time interval, the magnetic flux through the rectangle increases, giving the rate of change of magnetic flux. This value is substituted in Faraday's law, resulting in a relationship between E and B in terms of the speed of wave propagation in a vacuum.

Equation3

This expression shows that the wave is consistent with Faraday's law only if the wave speed and the magnitudes of the perpendicular vectors are related, as in the above equation.

Tags

Plane Electromagnetic WavesWavefrontElectric FieldsMagnetic FieldsFaraday s LawIntegralMagnetic FluxSpeed Of Wave PropagationRelationship E And BCounterclockwise IntegrationArea VectorTime Derivative Of Magnetic Flux

Aus Kapitel 33:

article

Now Playing

33.6 : Plane Electromagnetic Waves II

Electromagnetic Waves

3.0K Ansichten

article

33.1 : Elektromagnetische Wellen

Electromagnetic Waves

8.4K Ansichten

article

33.2 : Erzeugung elektromagnetischer Strahlung

Electromagnetic Waves

2.5K Ansichten

article

33.3 : Das elektromagnetische Spektrum

Electromagnetic Waves

14.7K Ansichten

article

33.4 : Gleichung für elektromagnetische Wellen

Electromagnetic Waves

945 Ansichten

article

33.5 : Ebene Elektromagnetische Wellen I

Electromagnetic Waves

3.6K Ansichten

article

33.7 : Ausbreitungsgeschwindigkeit elektromagnetischer Wellen

Electromagnetic Waves

3.3K Ansichten

article

33.8 : Elektromagnetische Wellen in der Materie

Electromagnetic Waves

2.9K Ansichten

article

33.9 : Energie, die von elektromagnetischen Wellen getragen wird

Electromagnetic Waves

2.8K Ansichten

article

33.10 : Intensität elektromagnetischer Wellen

Electromagnetic Waves

4.3K Ansichten

article

33.11 : Impuls und Strahlungsdruck

Electromagnetic Waves

1.9K Ansichten

article

33.12 : Strahlungsdruck: Problemlösung

Electromagnetic Waves

294 Ansichten

article

33.13 : Stehende elektromagnetische Wellen

Electromagnetic Waves

1.4K Ansichten

article

33.14 : Stehende Wellen in einem Hohlraum

Electromagnetic Waves

835 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten