Войдите в систему

Consider a plane wavefront traveling in position x-direction with a constant speed. This wavefront can be utilized to obtain the relationship between electric and magnetic fields with the help of Faraday's law.

Equation1

Figure1

To apply Faraday's law, consider a rectangle of width a, as shown in the figure.1, whose area vector is in the positive z-direction. To solve the left-hand side integral in Faraday's law, integrate counterclockwise along the rectangle. The electric field is zero along one of the lengths lying outside the wavefront, while the electric field is perpendicular to the other two length elements. These three sides give no contribution to the integral. Only along one side, the electric field has a non-zero value, and it is parallel to the length. This side contributes to the integral, giving a non-zero value.

Equation2

Since the left side of Faraday's law is non-zero, to satisfy the equation there must be a magnetic field component in the positive z-direction, which can provide a non-zero magnetic flux through the rectangle and hence a non-zero time derivative of magnetic flux. To obtain this value, consider that in time dt, the wave moves a distance c dt. While moving, it sweeps an area equal to ac dt. During this time interval, the magnetic flux through the rectangle increases, giving the rate of change of magnetic flux. This value is substituted in Faraday's law, resulting in a relationship between E and B in terms of the speed of wave propagation in a vacuum.

Equation3

This expression shows that the wave is consistent with Faraday's law only if the wave speed and the magnitudes of the perpendicular vectors are related, as in the above equation.

Теги
Plane Electromagnetic WavesWavefrontElectric FieldsMagnetic FieldsFaraday s LawIntegralMagnetic FluxSpeed Of Wave PropagationRelationship E And BCounterclockwise IntegrationArea VectorTime Derivative Of Magnetic Flux

Из главы 33:

article

Now Playing

33.6 : Plane Electromagnetic Waves II

Electromagnetic Waves

3.0K Просмотры

article

33.1 : Электромагнитные волны

Electromagnetic Waves

8.3K Просмотры

article

33.2 : Генерация электромагнитных излучений

Electromagnetic Waves

2.3K Просмотры

article

33.3 : Электромагнитный спектр

Electromagnetic Waves

13.4K Просмотры

article

33.4 : Уравнение электромагнитной волны

Electromagnetic Waves

897 Просмотры

article

33.5 : Плоские электромагнитные волны I

Electromagnetic Waves

3.5K Просмотры

article

33.7 : Скорость распространения электромагнитных волн

Electromagnetic Waves

3.3K Просмотры

article

33.8 : Электромагнитные волны в веществе

Electromagnetic Waves

2.9K Просмотры

article

33.9 : Энергия, переносимая электромагнитными волнами

Electromagnetic Waves

2.7K Просмотры

article

33.10 : Интенсивность электромагнитных волн

Electromagnetic Waves

4.2K Просмотры

article

33.11 : Импульс и давление излучения

Electromagnetic Waves

1.8K Просмотры

article

33.12 : Радиационное давление: решение проблемы

Electromagnetic Waves

258 Просмотры

article

33.13 : Стоячие электромагнитные волны

Electromagnetic Waves

1.3K Просмотры

article

33.14 : Стоячие волны в полости

Electromagnetic Waves

779 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены