Sign In

Consider a plane wavefront traveling in position x-direction with a constant speed. This wavefront can be utilized to obtain the relationship between electric and magnetic fields with the help of Faraday's law.

Equation1

Figure1

To apply Faraday's law, consider a rectangle of width a, as shown in the figure.1, whose area vector is in the positive z-direction. To solve the left-hand side integral in Faraday's law, integrate counterclockwise along the rectangle. The electric field is zero along one of the lengths lying outside the wavefront, while the electric field is perpendicular to the other two length elements. These three sides give no contribution to the integral. Only along one side, the electric field has a non-zero value, and it is parallel to the length. This side contributes to the integral, giving a non-zero value.

Equation2

Since the left side of Faraday's law is non-zero, to satisfy the equation there must be a magnetic field component in the positive z-direction, which can provide a non-zero magnetic flux through the rectangle and hence a non-zero time derivative of magnetic flux. To obtain this value, consider that in time dt, the wave moves a distance c dt. While moving, it sweeps an area equal to ac dt. During this time interval, the magnetic flux through the rectangle increases, giving the rate of change of magnetic flux. This value is substituted in Faraday's law, resulting in a relationship between E and B in terms of the speed of wave propagation in a vacuum.

Equation3

This expression shows that the wave is consistent with Faraday's law only if the wave speed and the magnitudes of the perpendicular vectors are related, as in the above equation.

Tags
Plane Electromagnetic WavesWavefrontElectric FieldsMagnetic FieldsFaraday s LawIntegralMagnetic FluxSpeed Of Wave PropagationRelationship E And BCounterclockwise IntegrationArea VectorTime Derivative Of Magnetic Flux

From Chapter 33:

article

Now Playing

33.6 : Plane Electromagnetic Waves II

Electromagnetic Waves

3.0K Views

article

33.1 : גלים אלקטרומגנטיים

Electromagnetic Waves

8.3K Views

article

33.2 : יצירת קרינה אלקטרומגנטית

Electromagnetic Waves

2.3K Views

article

33.3 : הספקטרום האלקטרומגנטי

Electromagnetic Waves

13.4K Views

article

33.4 : משוואת הגלים האלקטרומגנטיים

Electromagnetic Waves

897 Views

article

33.5 : גלים אלקטרומגנטיים מישוריים I

Electromagnetic Waves

3.5K Views

article

33.7 : מהירות התפשטות גלים אלקטרומגנטיים

Electromagnetic Waves

3.3K Views

article

33.8 : גלים אלקטרומגנטיים בחומר

Electromagnetic Waves

2.9K Views

article

33.9 : אנרגיה הנישאת על ידי גלים אלקטרומגנטיים

Electromagnetic Waves

2.7K Views

article

33.10 : עוצמת גלים אלקטרומגנטיים

Electromagnetic Waves

4.2K Views

article

33.11 : תנע ולחץ קרינה

Electromagnetic Waves

1.8K Views

article

33.12 : לחץ קרינה: פתרון בעיות

Electromagnetic Waves

258 Views

article

33.13 : גלים אלקטרומגנטיים עומדים

Electromagnetic Waves

1.3K Views

article

33.14 : גלים עומדים בחלל

Electromagnetic Waves

779 Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved