Iniciar sesión

Cartesian vector notation is a valuable tool in mechanical engineering for representing vectors in three-dimensional space, performing vector operations such as determining the gradient, divergence, and curl, and expressing physical quantities such as the displacement, velocity, acceleration, and force. By using Cartesian vector notation, engineers can more easily analyze and solve problems in various areas of mechanical engineering, including dynamics, kinematics, and fluid mechanics. This notation represents a vector in terms of three components along the x, y, and z axes, respectively.

For example, suppose we have a vector A pointing in the direction (3, −4, 5). In that case, it can be represented using Cartesian vector notation as A = 3i - 4j + 5k, where i, j, and k are unit vectors along the x, y, and z axes, respectively. The unit vectors are defined as i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Cartesian vector notation can be used to perform various vector operations, such as addition, subtraction, and scalar multiplication. For example, if we have two vectors, A = 3i - 4j + 5k and B = 2i + 7j - 3k, we can add them using Cartesian vector notation as follows:

Equation 1

We can also subtract them as follows:

Equation 2

Tags
Cartesian Vector NotationMechanical EngineeringVector OperationsGradientDivergenceCurlDisplacementVelocityAccelerationForceDynamicsKinematicsFluid MechanicsUnit VectorsVector AdditionVector SubtractionScalar Multiplication

Del capítulo 2:

article

Now Playing

2.9 : Cartesian Vector Notation

Force Vectors

652 Vistas

article

2.1 : Escalares y vectores

Force Vectors

1.1K Vistas

article

2.2 : Operaciones vectoriales

Force Vectors

1.1K Vistas

article

2.3 : Introducción a la fuerza

Force Vectors

422 Vistas

article

2.4 : Clasificación de la fuerza

Force Vectors

1.0K Vistas

article

2.5 : Suma vectorial de fuerzas

Force Vectors

537 Vistas

article

2.6 : Sistema de fuerza bidimensional

Force Vectors

802 Vistas

article

2.7 : Sistema de Fuerza Bidimensional: Resolución de Problemas

Force Vectors

493 Vistas

article

2.8 : Notación escalar

Force Vectors

601 Vistas

article

2.10 : Cosenos de dirección de un vector

Force Vectors

370 Vistas

article

2.11 : Sistema de fuerza tridimensional

Force Vectors

1.8K Vistas

article

2.12 : Sistema de fuerza tridimensional: resolución de problemas

Force Vectors

564 Vistas

article

2.13 : Vectores de posición

Force Vectors

669 Vistas

article

2.14 : Vector de fuerza a lo largo de una línea

Force Vectors

423 Vistas

article

2.15 : Producto Dot

Force Vectors

248 Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados