S'identifier

Cartesian vector notation is a valuable tool in mechanical engineering for representing vectors in three-dimensional space, performing vector operations such as determining the gradient, divergence, and curl, and expressing physical quantities such as the displacement, velocity, acceleration, and force. By using Cartesian vector notation, engineers can more easily analyze and solve problems in various areas of mechanical engineering, including dynamics, kinematics, and fluid mechanics. This notation represents a vector in terms of three components along the x, y, and z axes, respectively.

For example, suppose we have a vector A pointing in the direction (3, −4, 5). In that case, it can be represented using Cartesian vector notation as A = 3i - 4j + 5k, where i, j, and k are unit vectors along the x, y, and z axes, respectively. The unit vectors are defined as i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Cartesian vector notation can be used to perform various vector operations, such as addition, subtraction, and scalar multiplication. For example, if we have two vectors, A = 3i - 4j + 5k and B = 2i + 7j - 3k, we can add them using Cartesian vector notation as follows:

Equation 1

We can also subtract them as follows:

Equation 2

Tags
Cartesian Vector NotationMechanical EngineeringVector OperationsGradientDivergenceCurlDisplacementVelocityAccelerationForceDynamicsKinematicsFluid MechanicsUnit VectorsVector AdditionVector SubtractionScalar Multiplication

Du chapitre 2:

article

Now Playing

2.9 : Cartesian Vector Notation

Force Vectors

652 Vues

article

2.1 : Scalaire et vecteurs

Force Vectors

1.1K Vues

article

2.2 : Opérations vectorielles

Force Vectors

1.1K Vues

article

2.3 : Introduction à la force

Force Vectors

422 Vues

article

2.4 : Force Classification

Force Vectors

1.0K Vues

article

2.5 : Addition vectorielle des forces

Force Vectors

537 Vues

article

2.6 : Système de force bidimensionnel

Force Vectors

802 Vues

article

2.7 : Système de force bidimensionnel : résolution de problèmes

Force Vectors

493 Vues

article

2.8 : Notation scalaire

Force Vectors

601 Vues

article

2.10 : Cosinus directeurs d’un vecteur

Force Vectors

370 Vues

article

2.11 : Système de force tridimensionnel

Force Vectors

1.8K Vues

article

2.12 : Système de force tridimensionnelle : résolution de problèmes

Force Vectors

564 Vues

article

2.13 : Vecteurs de position

Force Vectors

669 Vues

article

2.14 : Vecteur de force le long d’une droite

Force Vectors

423 Vues

article

2.15 : Produit scalaire

Force Vectors

248 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.