Anmelden

Cartesian vector notation is a valuable tool in mechanical engineering for representing vectors in three-dimensional space, performing vector operations such as determining the gradient, divergence, and curl, and expressing physical quantities such as the displacement, velocity, acceleration, and force. By using Cartesian vector notation, engineers can more easily analyze and solve problems in various areas of mechanical engineering, including dynamics, kinematics, and fluid mechanics. This notation represents a vector in terms of three components along the x, y, and z axes, respectively.

For example, suppose we have a vector A pointing in the direction (3, −4, 5). In that case, it can be represented using Cartesian vector notation as A = 3i - 4j + 5k, where i, j, and k are unit vectors along the x, y, and z axes, respectively. The unit vectors are defined as i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Cartesian vector notation can be used to perform various vector operations, such as addition, subtraction, and scalar multiplication. For example, if we have two vectors, A = 3i - 4j + 5k and B = 2i + 7j - 3k, we can add them using Cartesian vector notation as follows:

Equation 1

We can also subtract them as follows:

Equation 2

Tags
Cartesian Vector NotationMechanical EngineeringVector OperationsGradientDivergenceCurlDisplacementVelocityAccelerationForceDynamicsKinematicsFluid MechanicsUnit VectorsVector AdditionVector SubtractionScalar Multiplication

Aus Kapitel 2:

article

Now Playing

2.9 : Cartesian Vector Notation

Force Vectors

652 Ansichten

article

2.1 : Skalar und Vektoren

Force Vectors

1.1K Ansichten

article

2.2 : Vektor-Operationen

Force Vectors

1.1K Ansichten

article

2.3 : Einführung in die Kraft

Force Vectors

422 Ansichten

article

2.4 : Klassifizierung der Kräfte

Force Vectors

1.0K Ansichten

article

2.5 : Vektoraddition von Kräften

Force Vectors

537 Ansichten

article

2.6 : Zweidimensionales Kraftsystem

Force Vectors

802 Ansichten

article

2.7 : Zweidimensionales Kraftsystem: Problemlösung

Force Vectors

493 Ansichten

article

2.8 : Skalare Notation

Force Vectors

602 Ansichten

article

2.10 : Richtungskosinus eines Vektors

Force Vectors

371 Ansichten

article

2.11 : Dreidimensionales Kraftsystem

Force Vectors

1.8K Ansichten

article

2.12 : Dreidimensionales Kraftsystem: Problemlösung

Force Vectors

564 Ansichten

article

2.13 : Positionsvektoren

Force Vectors

669 Ansichten

article

2.14 : Kraftvektor entlang einer Linie

Force Vectors

423 Ansichten

article

2.15 : Skalarprodukt

Force Vectors

248 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten