サインイン

Cartesian vector notation is a valuable tool in mechanical engineering for representing vectors in three-dimensional space, performing vector operations such as determining the gradient, divergence, and curl, and expressing physical quantities such as the displacement, velocity, acceleration, and force. By using Cartesian vector notation, engineers can more easily analyze and solve problems in various areas of mechanical engineering, including dynamics, kinematics, and fluid mechanics. This notation represents a vector in terms of three components along the x, y, and z axes, respectively.

For example, suppose we have a vector A pointing in the direction (3, −4, 5). In that case, it can be represented using Cartesian vector notation as A = 3i - 4j + 5k, where i, j, and k are unit vectors along the x, y, and z axes, respectively. The unit vectors are defined as i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Cartesian vector notation can be used to perform various vector operations, such as addition, subtraction, and scalar multiplication. For example, if we have two vectors, A = 3i - 4j + 5k and B = 2i + 7j - 3k, we can add them using Cartesian vector notation as follows:

Equation 1

We can also subtract them as follows:

Equation 2

タグ
Cartesian Vector NotationMechanical EngineeringVector OperationsGradientDivergenceCurlDisplacementVelocityAccelerationForceDynamicsKinematicsFluid MechanicsUnit VectorsVector AdditionVector SubtractionScalar Multiplication

章から 2:

article

Now Playing

2.9 : Cartesian Vector Notation

力のベクトル

652 閲覧数

article

2.1 : スカラーとベクトル

力のベクトル

1.1K 閲覧数

article

2.2 : ベクトル演算

力のベクトル

1.1K 閲覧数

article

2.3 : 力の紹介

力のベクトル

422 閲覧数

article

2.4 : 力の分類

力のベクトル

1.0K 閲覧数

article

2.5 : 力のベクトル加算

力のベクトル

537 閲覧数

article

2.6 : 2次元力システム

力のベクトル

802 閲覧数

article

2.7 : 2次元力システム:問題解決

力のベクトル

493 閲覧数

article

2.8 : スカラー表記

力のベクトル

601 閲覧数

article

2.10 : ベクトルの方向余弦

力のベクトル

370 閲覧数

article

2.11 : 3次元力システム

力のベクトル

1.8K 閲覧数

article

2.12 : 3次元力システム:問題解決

力のベクトル

564 閲覧数

article

2.13 : 位置ベクトル

力のベクトル

669 閲覧数

article

2.14 : 線に沿ってベクトルを強制する

力のベクトル

423 閲覧数

article

2.15 : ドット積

力のベクトル

248 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved