Iniciar sesión

The divergence of a vector field at a point is the net outward flow of the flux out of a small volume through a closed surface enclosing the volume, as the volume tends to zero. More practically, divergence measures how much a vector field spreads out or diverges from a given point. For an outgoing flux, conventionally, the divergence is positive. The diverging point is often called the "source" of the field. Meanwhile, the negative divergence of a vector field at a point means that the vector field is "contracting" or "converging" towards that point. This implies that the vector field is flowing inwards towards the point more than it is flowing outwards. This point is often called the "sink" of the field.

The divergence is zero if the inward flux at a point equals the outward flux. Mathematically, divergence is the dot product of the del operator with the vector field and is expressed as

Equation1

The curl of a vector field is the circulation of the vector per unit area as this area tends to zero, and is in the direction normal to the area where the circulation is maximum. The curl of a vector field indicates the local rotation or circulation of the vector field calculated at any arbitrary point. A zero curl indicates no rotation, while a non-zero curl indicates rotation of the vector field. Mathematically, curl is the cross product of the del operator with the vector field and is expressed as

Equation2

Curl is an important concept in many areas of physics, including electromagnetism and fluid dynamics. In electromagnetism, the curl of electric and magnetic fields determines the behavior of electromagnetic waves. Meanwhile, in fluid dynamics, the curl of the velocity field determines the degree to which a fluid "circulates" or "rotates" at a given point.

A curl indicates direction of a non-uniform flow, whereas divergence of the field only shows the scalar distribution of its sources.

Tags
DivergenceCurlVector FieldFluxSourceSinkDel OperatorCirculationRotationElectromagnetismFluid DynamicsScalar DistributionNon uniform Flow

Del capítulo 2:

article

Now Playing

2.12 : Divergence and Curl

Vectores y escalares

1.5K Vistas

article

2.1 : Introducción a los escalares

Vectores y escalares

13.7K Vistas

article

2.2 : Introducción a los vectores

Vectores y escalares

13.4K Vistas

article

2.3 : Componentes vectoriales in el sistema de coordenadas cartesianas

Vectores y escalares

18.0K Vistas

article

2.4 : Coordenadas polares y cilíndricas

Vectores y escalares

14.1K Vistas

article

2.5 : Coordenadas esféricas

Vectores y escalares

9.7K Vistas

article

2.6 : Álgebra vectorial: método gráfico

Vectores y escalares

11.3K Vistas

article

2.7 : Álgebra vectorial: método de los componentes

Vectores y escalares

13.2K Vistas

article

2.8 : Producto escalar (producto punto)

Vectores y escalares

8.0K Vistas

article

2.9 : Producto vectorial (Producto cruz)

Vectores y escalares

9.2K Vistas

article

2.10 : Productos escalares y vectoriales triples

Vectores y escalares

2.2K Vistas

article

2.11 : Operador Gradiente y Supr

Vectores y escalares

2.4K Vistas

article

2.13 : Segundas Derivadas y Operador de Laplace

Vectores y escalares

1.1K Vistas

article

2.14 : Integrales de línea, superficie y volumen

Vectores y escalares

2.1K Vistas

article

2.15 : La divergencia y los teoremas de Stokes

Vectores y escalares

1.4K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados