Entrar

The divergence of a vector field at a point is the net outward flow of the flux out of a small volume through a closed surface enclosing the volume, as the volume tends to zero. More practically, divergence measures how much a vector field spreads out or diverges from a given point. For an outgoing flux, conventionally, the divergence is positive. The diverging point is often called the "source" of the field. Meanwhile, the negative divergence of a vector field at a point means that the vector field is "contracting" or "converging" towards that point. This implies that the vector field is flowing inwards towards the point more than it is flowing outwards. This point is often called the "sink" of the field.

The divergence is zero if the inward flux at a point equals the outward flux. Mathematically, divergence is the dot product of the del operator with the vector field and is expressed as

Equation1

The curl of a vector field is the circulation of the vector per unit area as this area tends to zero, and is in the direction normal to the area where the circulation is maximum. The curl of a vector field indicates the local rotation or circulation of the vector field calculated at any arbitrary point. A zero curl indicates no rotation, while a non-zero curl indicates rotation of the vector field. Mathematically, curl is the cross product of the del operator with the vector field and is expressed as

Equation2

Curl is an important concept in many areas of physics, including electromagnetism and fluid dynamics. In electromagnetism, the curl of electric and magnetic fields determines the behavior of electromagnetic waves. Meanwhile, in fluid dynamics, the curl of the velocity field determines the degree to which a fluid "circulates" or "rotates" at a given point.

A curl indicates direction of a non-uniform flow, whereas divergence of the field only shows the scalar distribution of its sources.

Tags
DivergenceCurlVector FieldFluxSourceSinkDel OperatorCirculationRotationElectromagnetismFluid DynamicsScalar DistributionNon uniform Flow

Do Capítulo 2:

article

Now Playing

2.12 : Divergência e Rotação

Vetores e Escalares

1.5K Visualizações

article

2.1 : Introdução a Escalares

Vetores e Escalares

13.7K Visualizações

article

2.2 : Introdução a Vetores

Vetores e Escalares

13.4K Visualizações

article

2.3 : Componentes de Vetores no Sistema de Coordenadas Cartesianas

Vetores e Escalares

18.0K Visualizações

article

2.4 : Coordenadas polares e cilíndricas

Vetores e Escalares

14.1K Visualizações

article

2.5 : Coordenadas Esféricas

Vetores e Escalares

9.7K Visualizações

article

2.6 : Álgebra de Vetores: Método Gráfico

Vetores e Escalares

11.3K Visualizações

article

2.7 : Álgebra vetorial: Método dos componentes

Vetores e Escalares

13.2K Visualizações

article

2.8 : Produto Escalar

Vetores e Escalares

8.0K Visualizações

article

2.9 : Produto Vetorial

Vetores e Escalares

9.2K Visualizações

article

2.10 : Produtos triplos escalares e vetoriais

Vetores e Escalares

2.2K Visualizações

article

2.11 : Gradiente e operador nabla

Vetores e Escalares

2.4K Visualizações

article

2.13 : Segundas derivadas e operador de Laplace

Vetores e Escalares

1.1K Visualizações

article

2.14 : Integrais de linha, superfície e volume

Vetores e Escalares

2.1K Visualizações

article

2.15 : Divergência e Teoremas de Stokes

Vetores e Escalares

1.4K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados