Sign In

The divergence of a vector field at a point is the net outward flow of the flux out of a small volume through a closed surface enclosing the volume, as the volume tends to zero. More practically, divergence measures how much a vector field spreads out or diverges from a given point. For an outgoing flux, conventionally, the divergence is positive. The diverging point is often called the "source" of the field. Meanwhile, the negative divergence of a vector field at a point means that the vector field is "contracting" or "converging" towards that point. This implies that the vector field is flowing inwards towards the point more than it is flowing outwards. This point is often called the "sink" of the field.

The divergence is zero if the inward flux at a point equals the outward flux. Mathematically, divergence is the dot product of the del operator with the vector field and is expressed as

Equation1

The curl of a vector field is the circulation of the vector per unit area as this area tends to zero, and is in the direction normal to the area where the circulation is maximum. The curl of a vector field indicates the local rotation or circulation of the vector field calculated at any arbitrary point. A zero curl indicates no rotation, while a non-zero curl indicates rotation of the vector field. Mathematically, curl is the cross product of the del operator with the vector field and is expressed as

Equation2

Curl is an important concept in many areas of physics, including electromagnetism and fluid dynamics. In electromagnetism, the curl of electric and magnetic fields determines the behavior of electromagnetic waves. Meanwhile, in fluid dynamics, the curl of the velocity field determines the degree to which a fluid "circulates" or "rotates" at a given point.

A curl indicates direction of a non-uniform flow, whereas divergence of the field only shows the scalar distribution of its sources.

Tags
DivergenceCurlVector FieldFluxSourceSinkDel OperatorCirculationRotationElectromagnetismFluid DynamicsScalar DistributionNon uniform Flow

From Chapter 2:

article

Now Playing

2.12 : Divergence and Curl

Vectors and Scalars

1.5K Views

article

2.1 : מבוא לסקלרים

Vectors and Scalars

13.7K Views

article

2.2 : מבוא לווקטורים

Vectors and Scalars

13.4K Views

article

2.3 : רכיבים וקטוריים במערכת הקואורדינטות הקרטזית

Vectors and Scalars

18.0K Views

article

2.4 : קואורדינטות קוטביות וגליליות

Vectors and Scalars

14.1K Views

article

2.5 : קואורדינטות כדוריות

Vectors and Scalars

9.7K Views

article

2.6 : אלגברה וקטורית: שיטה גרפית

Vectors and Scalars

11.3K Views

article

2.7 : אלגברה וקטורית: שיטת הרכיבים

Vectors and Scalars

13.2K Views

article

2.8 : מוצר סקלרי (מוצר נקודה)

Vectors and Scalars

8.0K Views

article

2.9 : מוצר וקטורי (מוצר צולב)

Vectors and Scalars

9.2K Views

article

2.10 : מוצרים סקלריים ומשולשים וקטוריים

Vectors and Scalars

2.2K Views

article

2.11 : שיפוע ואופרטור דל

Vectors and Scalars

2.4K Views

article

2.13 : נגזרים שניים ואופרטור לפלס

Vectors and Scalars

1.1K Views

article

2.14 : אינטגרלי קו, משטח ונפח

Vectors and Scalars

2.1K Views

article

2.15 : סטייה ומשפטי סטוקס

Vectors and Scalars

1.4K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved