The divergence of a vector field at a point is the net outward flow of the flux out of a small volume through a closed surface enclosing the volume, as the volume tends to zero. More practically, divergence measures how much a vector field spreads out or diverges from a given point. For an outgoing flux, conventionally, the divergence is positive. The diverging point is often called the "source" of the field. Meanwhile, the negative divergence of a vector field at a point means that the vector field is "contracting" or "converging" towards that point. This implies that the vector field is flowing inwards towards the point more than it is flowing outwards. This point is often called the "sink" of the field.

The divergence is zero if the inward flux at a point equals the outward flux. Mathematically, divergence is the dot product of the del operator with the vector field and is expressed as

Equation1

The curl of a vector field is the circulation of the vector per unit area as this area tends to zero, and is in the direction normal to the area where the circulation is maximum. The curl of a vector field indicates the local rotation or circulation of the vector field calculated at any arbitrary point. A zero curl indicates no rotation, while a non-zero curl indicates rotation of the vector field. Mathematically, curl is the cross product of the del operator with the vector field and is expressed as

Equation2

Curl is an important concept in many areas of physics, including electromagnetism and fluid dynamics. In electromagnetism, the curl of electric and magnetic fields determines the behavior of electromagnetic waves. Meanwhile, in fluid dynamics, the curl of the velocity field determines the degree to which a fluid "circulates" or "rotates" at a given point.

A curl indicates direction of a non-uniform flow, whereas divergence of the field only shows the scalar distribution of its sources.

タグ
DivergenceCurlVector FieldFluxSourceSinkDel OperatorCirculationRotationElectromagnetismFluid DynamicsScalar DistributionNon uniform Flow

章から 2:

article

Now Playing

2.12 : Divergence and Curl

ベクトルとスカラー

1.5K 閲覧数

article

2.1 : スカラーの概要

ベクトルとスカラー

13.2K 閲覧数

article

2.2 : ベクトルの紹介

ベクトルとスカラー

12.8K 閲覧数

article

2.3 : デカルト座標系のベクトル成分

ベクトルとスカラー

17.0K 閲覧数

article

2.4 : 極座標と円筒座標

ベクトルとスカラー

13.8K 閲覧数

article

2.5 : 球面座標

ベクトルとスカラー

9.5K 閲覧数

article

2.6 : ベクトル代数:グラフィカルな方法

ベクトルとスカラー

10.8K 閲覧数

article

2.7 : ベクトル代数:成分の方法

ベクトルとスカラー

12.9K 閲覧数

article

2.8 : スカラー積(ドット積)

ベクトルとスカラー

7.9K 閲覧数

article

2.9 : ベクトル積 (外積)

ベクトルとスカラー

9.0K 閲覧数

article

2.10 : スカラーとベクトルのトリプル積

ベクトルとスカラー

2.1K 閲覧数

article

2.11 : グラデーションと del 演算子

ベクトルとスカラー

2.3K 閲覧数

article

2.13 : 2次導関数とラプラス演算子

ベクトルとスカラー

1.1K 閲覧数

article

2.14 : ライン、サーフェス、およびボリューム積分

ベクトルとスカラー

2.0K 閲覧数

article

2.15 : 発散とストークスの定理

ベクトルとスカラー

1.3K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved