JoVE Logo

Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Se describe un método de imagen no invasiva para distinguir las fases inflamatorias. El suministro sistémico de luminol revela zonas de inflamación aguda que dependen de la actividad MPO en neutrófilos. En contraste, la inyección de lucigenina permite la visualización de la inflamación crónica dependiente de la actividad Phox en los macrófagos.

Resumen

La inflamación es un aspecto fundamental de muchas enfermedades humanas. En este informe de vídeo, se demuestra las técnicas de imagen no invasivas bioluminiscencia que distinguen a la inflamación aguda y crónica en modelos de ratón. Con daños en los tejidos o la invasión de patógenos, los neutrófilos son la primera línea de defensa, jugando un papel importante en la mediación de la respuesta inflamatoria aguda. A medida que avanza la reacción inflamatoria, los monocitos circulantes migran gradualmente en el sitio de la lesión y se diferencian en macrófagos maduros, que median la inflamación crónica y promover la reparación del tejido mediante la eliminación de restos de tejido y la producción de citocinas antiinflamatorias. La inyección intraperitoneal de luminol (,4-ftalazinediona, sal de sodio de 5-amino-2 ,3-dihidro-1) permite la detección de la inflamación aguda en gran parte mediada por neutrófilos infiltrantes de tejidos. Luminol reacciona específicamente con el superóxido generado dentro de los fagosomas de neutrófilos desde bioluminiscencia resulta de una mieloperoxidasa (MPO) reacción mediada. Lucigenin (bis-N-metilacridinio nitrato) también reacciona con el superóxido con el fin de generar bioluminiscencia. Sin embargo, lucigenin bioluminiscencia es independiente de MPO y se basa únicamente en la NADPH oxidasa de fagocitos (Phox) en los macrófagos durante la inflamación crónica. Juntos, el luminol y lucigenina permiten la visualización no invasiva y la evaluación longitudinal de diferentes poblaciones fagocitos a través de fases inflamatorias tanto agudas como crónicas. Teniendo en cuenta el importante papel de la inflamación en una variedad de enfermedades humanas, creemos que este método de formación de imágenes no invasiva puede ayudar a investigar los papeles diferenciales de los neutrófilos y macrófagos en una variedad de condiciones patológicas.

Introducción

La inflamación es una respuesta biológica altamente regulado que participan en una variedad de enfermedades humanas, incluyendo la infección microbiana 1, cicatrización de la herida 2, 3 la diabetes, el cáncer de 4, 5 cardiovasculares, neurodegenerativas 6, 7 y enfermedades autoinmunes. Inflamación de tejidos requiere la coordinación adecuada de diversas células inmunes con el fin de lograr la autorización patógeno, la reparación de tejidos, y la resolución de la enfermedad. Los neutrófilos y los macrófagos son mediadores inmunes clave de la inflamación del tejido. En la fase aguda de la inflamación, los neutrófilos son los primeros en responder a diversos estímulos nocivos y daños en los tejidos 8. Los neutrófilos extravasación rápidamente de la circulación para el sitio de la lesión, donde las células inactivan los microbios invasores mediante la liberación de gránulos anti-microbianos y la fagocitosis. Durante la fagocitosis, neutrófilos fagocitan los microbios invasores en fagosomas, dentro de la cual las células producen niveles elevados de superóxidoide (O 2 · -). Superóxido phagosomal es la fuente principal de muchas especies reactivas de oxígeno (ROS aguas abajo). Por ejemplo, se puede dismutado superóxido a peróxido de hidrógeno (H 2 O 2) por dismutación espontánea o por la superóxido dismutasa (SOD) 9, 10. En los neutrófilos, la mieloperoxidasa (MPO) convierte más peróxido de hidrógeno a ácido hipocloroso antimicrobiana (HOCl) 11. Como las respuestas inflamatorias siguen, los monocitos circulantes migran gradualmente en el sitio de la lesión y se diferencian en macrófagos maduros 2, cuya función fagocítica ayudar a eliminar patógenos inactivados y restos celulares. Además, como un regulador clave en la última fase de la inflamación, los macrófagos promueve la reparación del tejido mediante la producción de citocinas antiinflamatorias y 12 mediante la generación de ROS extracelular a un nivel inferior 9. El ROS generado en esta etapa posterior a regular la remodelación de tejidos, formación de nuevos vasos, y reepithelialización 13.

Fagocito NADPH oxidasa (Phox) es la fuente primaria de la producción de superóxido en neutrófilos y macrófagos 9. Phox es un complejo multi-subunidad cuyo montaje es estrictamente regulados 9. La holoenzima contiene varias subunidades reguladoras citosólicas (p67 phox, p47 phox, p40 phox y RAC) y una membrana heterodímero citocromo b 558 (compuesto por subunidades CYBA y CYBB). Citocromo b 558 es el núcleo de reacción dentro de la cual la subunidad CYBB (también conocido como p91 phox y NOX2) lleva a cabo la reacción en cadena redox primaria 9. Curiosamente, sus lugares de concentración son diferentes entre los neutrófilos y los macrófagos. En los neutrófilos en reposo, el citocromo b 558 es sobre todo presente en la membrana de los gránulos de almacenamiento intracelular 14. Durante la fagocitosis, neutrófilos montar la holoenzymes en fagosomas 9, donde también están presentes altos niveles de actividad de MPO. El neutrófilo Phox consume rápidamente oxígeno y ejerce su poder microbicida por la producción de ROS, un fenómeno denominado el estallido respiratorio 11. En contraste, los macrófagos tienen un nivel más bajo de expresión de MPO y el citocromo b 558 se encuentra principalmente en la membrana de plasma 15, 16. Por lo tanto los neutrófilos producen altos niveles de superóxido para la actividad anti-microbiana, mientras que los macrófagos generan menos superóxido para las funciones de regulación 15.

Dado que la inflamación es un intrincado proceso in vivo, los métodos de imagen no invasivas específicos para las diferentes fases de la inflamación serían permiten la evaluación cuantitativa y longitudinal de modelos de enfermedad. Uso de estudios mecanísticos, hemos demostrado previamente el uso de dos agentes quimioluminiscentes, luminol (5-amino-2 ,3-dihidro-1 ,4-ftalazinediona) y lucigenina (bis-N-metilacridinio nitrato), Para formación de imágenes no invasiva de las etapas agudas y tardías (crónica) de la inflamación, respectivamente 17. Luminol permite la visualización de la actividad de MPO de neutrófilos en la fase aguda de la inflamación 18-20, mientras que la bioluminiscencia lucigenina se puede utilizar para evaluar la actividad de los macrófagos en asociación con la fase tardía o la inflamación crónica 17. En este manuscrito, se utilizaron dos modelos experimentales de inflamación (sc PMA y sc LPS) para demostrar estas técnicas de imagen.

Protocolo

Nota: Todos los estudios con animales se realizaron de acuerdo con protocolos institucionales aprobados y las directrices de cuidado de animales.

1. Reactivos y Soluciones

  1. Solución de PMA para la inoculación sc: Preparar una solución madre de forbol 12-miristato 13-acetato (PMA) a 5 mg / ml en DMSO. Guarde la solución madre a -20 ° C. Antes de la inoculación, descongelar la solución madre y se diluye hasta 1 mg / ml de PMA en PBS.
  2. Solución de LPS para la inoculación sc: Disolver lipopolisacárido (LPS de Salmonella enterica serotipo enteritidis) en PBS estéril a 1 mg / ml antes de la inoculación sc.
  3. Solución de luminol para obtener imágenes de fase aguda: Disolver luminol (,4-ftalazinediona, sal de sodio de 5-amino-2 ,3-dihidro-1) en solución salina normal estéril (0,9% NaCl) a 10 mg / ml. La solución puede ser almacenada a -20 ° C antes de su uso.
  4. Solución Lucigenin para obtener imágenes de la fase crónica: Disolver lucigenin (bis-N-metilacridinio nitrato) en solución salina normal estérila 2,5 mg / ml. La solución puede ser almacenada a -20 ° C antes de su uso.

2. Subcutánea PMA inflamación Modelo

  1. Anestesie NCr ratones desnudos en una cámara de inducción con isoflurano 1-2%. Confirmar anestesia general por la pérdida de movimiento y un ritmo respiratorio constante. Transferir a un animal a un cono de nariz suministrado con gas isoflurano-mezclado y mantener al animal bajo anestesia.
  2. Utilice un alcohol isopropílico limpiar para limpiar y desinfectar el lugar de la inyección en el flanco izquierdo.
  3. Utilizando una técnica estéril, inyectar 50 l de la solución de inoculación PMA (que contiene 50 g de PMA) en el espacio subcutáneo en el flanco izquierdo. Retire el exceso de líquido del sitio de la inyección con un algodón con alcohol isopropílico. Evite el uso de analgesia, ya que puede afectar a las respuestas inflamatorias.
  4. Mueva el animal de nuevo a la jaula de la vivienda y seguir de cerca su recuperación de la anestesia. A fin de ayudar en la recuperación, use una almohadilla térmica para mantener el calor del animal.

3. Subcutánea LPS inflamación Modelo

  1. Anestesie ratones C57BL/6J con 1-2% isoflurano en una cámara de inducción. Una vez que se establece la anestesia general, la transferencia de un animal a un cono de la nariz suministrado con gas isoflurano y mantener al animal bajo anestesia.
  2. Utilice un alcohol isopropílico para limpiar la zona de la inyección en la pata izquierda.
  3. Utilizando una técnica estéril, inyectar 50 l de la solución de inoculación de LPS (que contiene 50 g de LPS) en la almohadilla de la pata izquierda. Retire el exceso de líquido del sitio de la inyección con un algodón con alcohol isopropílico. Evite el uso de analgesia, ya que puede afectar a las respuestas inflamatorias.
  4. Mueva el animal de nuevo a la jaula de la vivienda y seguir de cerca su recuperación de la anestesia. Use una almohadilla térmica para mantener caliente el animal durante la recuperación.

4. Bioluminiscencia de imágenes de la inflamación

  1. Se anestesia al animal en una cámara de inducción con isoflurano 1-2% de gas mezclado. Confirm anestesia general por la pérdida de movimiento y un ritmo respiratorio constante.
  2. Mientras que el animal es todavía bajo anestesia, por vía intraperitoneal (ip) inyectar la solución de luminol (10 mg / ml), o la solución de lucigenina (2,5 mg / ml) para obtener imágenes de la inflamación aguda o crónica, respectivamente. La dosis final es 100 mg / kg para el luminol y 25 mg / kg para lucigenina. Una dosis más baja de lucigenina (10-15 mg / kg) se puede utilizar para evitar la posible toxicidad de algunas cepas de ratón. Los signos de toxicidad incluyen falta de aliento y dificultad respiratoria. La cepa C57BL/6J tiene menor lucigenin tolerabilidad que la cepa nude NCR.
  3. Transferir el animal en la cámara de formación de imágenes de un sistema de imágenes de bioluminiscencia.
  4. Realizar imágenes de bioluminiscencia secuencial a intervalos de 1 min. Cada paso de imagen está compuesto por 1 min tiempo de adquisición, f / stop = 1, hurgar en la basura = 16 y 0 segundos de retardo.
  5. En el panel de adquisición de imágenes, para permitir secuencial de imágenes de varios pasos, haga clic en la secuencia de la creación button. Proporcionar suficientes medidas de imagen en el perfil de adquisición para determinar la producción de luminiscencia máxima (normalmente 15 pasos de un minuto será suficiente). La sección de formación de imágenes 15-min permite tiempo suficiente para la absorción de sustrato y la circulación sistémica.
  6. Retire el animal de la cámara de imágenes y moverlo de nuevo a la jaula de la vivienda. A fin de ayudar en la recuperación, use una almohadilla térmica para mantener el calor del animal.
  7. Durante el análisis post-adquisición, utilizar el paquete de software de imágenes para el cálculo de pico de la señal bioluminiscente total a través de las regiones estandarizados de interés (ROI). Las imágenes se presentan como resplandor en fotones / s / cm 2 / sr con un umbral mínimo y máximo indicados. Los datos cuantitativos se presentan como flujo total de fotones por segundo por ROI.

Resultados

Se realizó imágenes de bioluminiscencia longitudinal para evaluar la inflamación aguda y crónica en modelos experimentales de inflamación. Forbol 12-miristato 13-acetato (PMA) es un agonista de la proteína quinasa C potente (PKC) que activa Phox para la producción de anión superóxido y desencadena intensas respuestas inflamatorias agudas 21. Inyección subcutánea de 50 mg de PMA en ratones desnudos NCr causó irritación de la piel rápido y la inflamación aguda en los sitios de inyección 18,...

Discusión

En este informe, se demuestra un método para obtener imágenes de bioluminiscencia no invasivo de la inflamación en los animales vivos. Tomando ventaja de dos sustratos luminiscente, el luminol y lucigenina, el método puede distinguir diferentes fases de la inflamación. Bioluminiscencia Luminol se asocia con los neutrófilos en la fase aguda de la inflamación, mientras que la bioluminiscencia lucigenina está mediada por los macrófagos en la fase crónica. Relativamente pequeño (PM = 177,16 g / mol) y no cargado ...

Divulgaciones

Los autores declaran no tener ningún conflicto de interés en este estudio.

Agradecimientos

Este trabajo fue apoyado por la Fundación Nancy Lurie Marcas. Damos las gracias a la Dra. Nancy E. Kohl para la lectura crítica del manuscrito. Agradecemos Kin K. Wong por su ayuda en la preparación de este informe en video.

Materiales

NameCompanyCatalog NumberComments
Phorbol 12-myristate 13-acetate (PMA)Sigma-Aldrich Co., St. Louis, MOP8139 
Lipopolysaccharide from Salmonella enterica serotype enteritidisSigma-Aldrich Co., St. Louis, MOL2012 
Luminol (5-amino-2,3-dihydro-1,4-phthalazinedione, sodium salt)Sigma-Aldrich Co., St. Louis, MOA4685 
Lucigenin (bis-N-methylacridinium nitrate)Sigma-Aldrich Co., St. Louis, MOM8010 
IVIS Spectrum imaging system with Living Imaging 4.2 software packageCaliper LS/Perkin Elmer, Hopkinton, MA 

Referencias

  1. Premack, B. A., Schall, T. J. Chemokine receptors: gateways to inflammation and infection. Nat. Med. 2, 1174-1178 (1996).
  2. Singer, A. J., Clark, R. A. Cutaneous wound healing. N. Engl. J. Med. 341, 738-746 (1999).
  3. Wellen, K. E., Hotamisligil, G. S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111-1119 (2005).
  4. Weitzman, S. A., Gordon, L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 76, 655-663 (1990).
  5. Ridker, P. M., Cushman, M., et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973-979 (1997).
  6. Wyss-Coray, T., Mucke, L. Inflammation in neurodegenerative disease--a double-edged sword. Neuron. 35, 419-432 (2002).
  7. Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533-544 (2008).
  8. Harlan, J. M. Leukocyte-endothelial interactions. Blood. 65, 513-525 (1985).
  9. Bedard, K., Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313 (2007).
  10. Rest, R. F., Spitznagel, J. K. Subcellular distribution of superoxide dismutases in human neutrophils. Influence of myeloperoxidase on the measurement of superoxide dismutase activity. Biochem. J. 166, 145-153 (1977).
  11. Hampton, M. B., Kettle, A. J., et al. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 92, 3007-3017 (1998).
  12. Serhan, C. N., Savill, J. Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6, 1191-1197 (2005).
  13. Jiang, F., Zhang, Y., et al. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol. Rev. 63, 218-242 (2011).
  14. Calafat, J., Kuijpers, T. W., et al. Evidence for small intracellular vesicles in human blood phagocytes containing cytochrome b558 and the adhesion molecule CD11b/CD18. Blood. 81, 3122-3129 (1993).
  15. Johansson, A., Jesaitis, A. J., et al. Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: effect on the production of reactive oxygen species during phagocytosis. Cell. Immunol. 161, 61-71 (1995).
  16. Kumar, A. P., Piedrafita, F. J., et al. Peroxisome proliferator-activated receptor gamma ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the -463GA promoter polymorphism. J. Biol. Chem. 279, 8300-8315 (2004).
  17. Tseng, J. C., Kung, A. L. In vivo imaging of inflammatory phagocytes. Chem Biol. 19, 1199-1209 (2012).
  18. Gross, S., Gammon, S. T., et al. Bioluminescence imaging of myeloperoxidase activity in vivo. Nat. Med. 15, 455-461 (2009).
  19. Kielland, A., Blom, T., et al. In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic. Biol. Med. 47, 760-766 (2009).
  20. Zhou, J., Tsai, Y. T., et al. Noninvasive assessment of localized inflammatory responses. Free Radic. Biol. Med. 52, 218-226 (2012).
  21. Karlsson, A., Nixon, J. B., et al. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. J. Leukoc. Biol. 67, 396-404 (2000).
  22. Taylor, R. G., McCall, C. E., et al. Histopathologic features of phorbol myristate acetate-induced lung injury. Lab Invest. 52, 61-70 (1985).
  23. Fukaya, S., Matsui, Y., et al. Overexpression of TNF-alpha-converting enzyme in fibroblasts augments dermal fibrosis after inflammation. Lab Invest. 93, 72-80 (2013).
  24. Lu, Y. C., Yeh, W. C., et al. LPS/TLR4 signal transduction pathway. Cytokine. 42, 145-151 (2008).
  25. Aitken, R. J., Buckingham, D. W., et al. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. J. Cell. Physiol. 151, 466-477 (1992).
  26. Allen, R. C., Loose, L. D. Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem. Biophys. Res. Commun. 69, 245-252 (1976).
  27. Caldefie-Chezet, F., Walrand, S., et al. Is the neutrophil reactive oxygen species production measured by luminol and lucigenin chemiluminescence intra or extracellular? Comparison with DCFH-DA flow cytometry and cytochrome c reduction. Clin. Chim. Acta. 319, 9-17 (2002).
  28. Dahlgren, C., Aniansson, H., et al. Pattern of formylmethionyl-leucyl-phenylalanine-induced luminol- and lucigenin-dependent chemiluminescence in human neutrophils. Infect. Immun. 47, 326-328 (1985).
  29. Dahlgren, C., Karlsson, A. Respiratory burst in human neutrophils. J. Immunol. Methods. 232, 3-14 (1999).
  30. Aerts, C., Wallaert, B., et al. Release of superoxide anion by alveolar macrophages in pulmonary sarcoidosis. Ann. N.Y. Acad. Sci. 465, 193-200 (1986).
  31. Zhang, N., Francis, K. P., et al. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat Med. , (2013).

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Inmunolog aN mero 78Infecci nMedicinaBiolog a CelularBiolog a MolecularIngenier a Biom dicaAnatom aFisiolog aBiolog a del C ncerBiolog a de C lulas Madreinflamaci nfagocitosFagocitosuper xidosImagen MolecularquimioluminiscenciaIn vivo Formaci n de im genessuper xidola bioluminiscenciala inflamaci n cr nicala inflamaci n agudafagocitosc lulasformaci n de im genesmodelo animal

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados