Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
A protocol for the production of synthetic nuclear melt glass, similar to trinitite, is presented.
Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition.
Concerns over the potential malicious use of nuclear weapons by terrorists or rogue nations have highlighted the importance of nuclear forensics analysis for the purpose of attribution.1 Rapid post-detonation analysis techniques are desirable to shorten the attribution timeline as much as possible. The development and validation of such techniques requires realistic nuclear debris samples for testing. Nuclear testing no longer occurs in the United States and nuclear surface debris from the testing era is not readily available (with the exception of trinitite - the melt glass produced by the first nuclear test at the trinity site) and therefore realistic surrogate debris is needed.
The primary goal of the method described here is the production of realistic surrogate nuclear debris similar to trinitite. Synthetic nuclear melt glass samples which are readily available to the academic community can be used to test existing analysis techniques and to develop new methods such as thermo-chromatography for rapid post-detonation analysis.2 With this goal in mind the current study is focused on producing samples which mimic trinitite but do not contain any sensitive weapon design information. The fuel and tamper components within these samples are completely generic and the comparison to trinitite is based on chemistry, morphology, and physical characteristics. The similarities between trinitite and the synthetic nuclear melt glass produced in this study have been previously discussed.3
The purpose of this article is to outline the details of the production process used at the University of Tennessee (UT). This production process was developed with two key parameters in mind: 1) the composition of material incorporated into nuclear melt glass, and 2) the melting temperature of the material. Methods exist for estimating the melting temperature of glass forming networks4 and these techniques have been employed here, along with additional experimentation to determine the optimal processing temperature for the trinitite matrix.5
Alternative methods for surrogate debris production have been published recently. The use of high power lasers has the advantage of creating sufficiently high temperatures to cause elemental fractionation within the target matrix.6 Porous chromatographic substrates have been used to produce small particles similar to fallout particles using condensed phase methods7. The latter method is most useful for producing particulate debris (nuclear fallout) and has been demonstrated with natural metals. The advantages of the method presented here are 1) simplicity, 2) reproducibility, and 3) scalability (sample sizes can range from tiny beads to large chunks of melt glass). Also, this method is expandable both in terms of production output and variety of explosive scenarios covered, and it has already been demonstrated using radioactive materials. A sample has been successfully activated at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Natural uranium compounds were added to the matrix prior to melting and fission products were produced in situ by neutron irradiation.
Methods within the glass making industry and those employed for the purpose of radioactive waste immobilization8 have been consulted in the development of the method presented here. The unique effects of radiation in glasses are of inherent interest9 and will constitute an important area of study as this method is further developed.
The method described below is appropriate for any application where a bulk melt glass sample is desired. These samples most closely resemble the material found near the epicenter of a nuclear explosion. Samples of various sizes can be produced, however, methods employing plasma torches or lasers will be more useful for simulating fine particulate debris. Also, commercial HTFs do not reach temperatures high enough to cause elemental fractionation for a wide range of elements. This method should be employed when physical and morphological characteristics are of primary importance.
Precaución: El proceso descrito aquí incluye el uso de material radiactivo (por ejemplo, hexahidrato de nitrato de uranio) y varias sustancias corrosivas. Ropa de protección adecuada y el equipo deben ser utilizados (incluyendo una bata de laboratorio, guantes, protección para los ojos, y una campana de humos) durante la preparación de la muestra. Además, las áreas de laboratorio utilizados para este trabajo deben ser controlados regularmente por la contaminación radiactiva.
Nota:. Los compuestos químicos necesarios se enumeran en la Tabla 1 Esta formulación se desarrolló mediante el examen previamente reportó datos de composición para trinitita 10 Las fracciones de masa aquí presentados fueron determinados por un promedio de las fracciones de masa de varias muestras trinitita diferentes 10 La masa "desaparecidos".. (las fracciones que no suman a la unidad) existe para permitir cierta flexibilidad a la hora de agregar combustible, sabotaje, y otros componentes. Nuestro análisis independiente de varias muestras trinitita sugiere que el cuarzo es la única fase mineralsobrevivir en trinitita. 5 Por lo tanto, el cuarzo es el único mineral incluido en nuestra trinitita formulación estándar (STF). Aunque granos reliquia de otros minerales han sido reportados en trinitita, 11 estos tienden a ser la excepción, no la regla. En general, el cuarzo es el único mineral que se encuentra en el vidrio fundido. 10,12 Además, la arena de cuarzo es un componente común de asfalto y hormigón que será importante en la formación de la masa fundida de vidrio nuclear urbana.
-4Promedió datos trinitita | Estándar trinitita Formulación (STF) | ||
Compuesto | Fracción de masa | Compuesto | Fracción de masa |
SiO 2 | 6.42x10 -1 | SiO 2 | 6.42x10 -1 |
Al 2 O 3 | 1.43x10 -1 | Al 2 O 3 | 1.43x10 -1 |
CaO | 9.64x10 -2 | CaO | 9.64x10 -2 |
FeO | 1.97x10 -2 | 1.97x10 -2 | |
MgO | 1.15x10 -2 | MgO | 1.15x10 -2 |
Na2O | 1.25x10 -2 | Na2O | 1.25x10 -2 |
K 2 O | 5.13x10 -2 | KOH | 6.12x10 -2 |
MnO | 5.05x10 -4 | MnO | |
TiO 2 | 4.27x10 -3 | TiO 2 | 4.27x10 -3 |
Total | 9.81x10 -1 | Total | 9.91x10 -1 |
Tabla 1. Lista de compuestos químicos.
1. Preparación de la STF
Nota: El equipo necesario incluye una microbalanza, espátulas de metal, un mortero y una maja de cerámica, una campana de humos químicos, guantes de látex, una bata de laboratorio y protección para los ojos.
2. La producción de 1 gramo Melt Glass Muestra
Nota: El equipo necesario incluye una HTF nominal de 1.600 ° C o superior, crisoles de alta pureza de grafito, acero inoxidable largas pinzas, guantes resistentes al calor y protección para los ojos. Guantes resistentes al calor y protección para los ojos se deben usar al introducir o extraer muestras del horno. Gafas de seguridad tintados (o gafas de sol) son útiles, ya que reducen el resplandor del horno.
Activación 3. Muestra
Nota: Las ecuaciones que siguen se obtuvieron asumiendo el uso de armas de grado (enriquecido) uranio metálico. Tendrá que ser reducido de acuerdo con la fracción de masa de uranio elemental y el nivel de enriquecimiento de U 235 Las cantidades de UNH u óxido de uranio.
Nota: Gran se debe tener cuidado cuando se trata de plutonio y análisis adicional será requerida. Al escribir estas líneas, sólo el uranio se ha utilizado en las muestras de vidrio de fusión sintéticos producidos en UT y irradiados en HFIR.
Las muestras no radiactivos producidos en este estudio han sido comparados con trinitita y las Figuras 1-3 muestran que las propiedades físicas y la morfología son, en efecto similar. La Figura 1 proporciona fotografías que revelan las similitudes en color y textura que se observan a nivel macroscópico. La figura 2 muestra microscopio electrónico de barrido (SEM) Imágenes secundarias Electron (SE) que revelan características similares a nivel mic...
Nota respecto a los pasos 1.2.2 y 1.2.3: La cantidad exacta de UNH variará dependiendo del escenario que se está simulando. Las fórmulas de planificación desarrollados por Giminaro et al. Se pueden utilizar para elegir la masa adecuada de uranio para una muestra dada 13 como se explica en la sección "Activación de ejemplo" de este artículo. También, óxido de uranio (UO 2 o U 3 O 8) se puede utilizar en lugar de UNH, si está disponible, y la fracci?...
This work was performed under grant number DE-NA0001983 from the Stewardship Science Academic Alliances (SSAA) Program of the National Nuclear Security Administration (NNSA).
Portions of this study have been previously published in the Journal of Radioanalytical and Nuclear Chemistry.3,13 A patent is pending for this method.
Name | Company | Catalog Number | Comments |
High Temperature Furnace (HTF) | Carbolite | HTF 18 | 1,800 °C HTF used to melt samples |
High Temperature Drop Furnace | CM Inc. | 1706 BL | 1,700 °C Drop Furnace used to melt samples |
Graphite Crucibles | SCP Science | 040-060-041 | 27 ml high purity graphite crucibles (10 pack) |
Crucible Tongs | Grainger | 5ZPV0 | 26 in., stainless steele tongs for handling crucibles |
Heat Resistent Gloves | Grainger | 8814-09 | Gloves used to protect hands from heat during sample intro/removal |
Mortar & Pestle | Fisherbrand | S337631 | 300 ml, Ceramic mortar and pestle for powdering and mixing |
Micro Balance | Grainger | 8NJG2 | 220 g Cap, high precision scale for measuring powder mass |
Spatulas | Fisherbrand | 14374 | Metal spatulas for measure small quantities of powder |
SiO2 | Sigma-Aldrich | 274739-5KG | Quartz Sand CAS Number: 14808-60-7 |
Al2O3 | Sigma-Aldrich | 11028-1KG | Aluminum Oxide Powder CAS Number: 1344-28-1 |
CaO | Sigma-Aldrich | 12047-2.5KG | Calcium Oxide Powder CAS Number: 1305-78-8 |
FeO | Sigma-Aldrich | 400866-25G | Iron Oxide Powder CAS Number: 1345-25-1 |
MgO | Sigma-Aldrich | 342793-250G | Magnesium Oxide Powder CAS Number: 1309-48-4 |
Na2O | Sigma-Aldrich | 36712-25G | Sodium Oxide Powder CAS Number: 1313-59-3 |
KOH | Sigma-Aldrich | 278904-250G | Potasium Hydroxide Pellets CAS Number: 12030-88-5 |
MnO | Sigma-Aldrich | 377201-500G | Manganese Oxide Powder CAS Number: 1344-43-0 |
TiO2 | Sigma-Aldrich | 791326-5G | Titanium Oxide Beads CAS Number: 12188-41-9 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados