Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
cultivos neuronales son un buen modelo para el estudio de las técnicas de estimulación del cerebro emergentes a través de su efecto sobre las neuronas individuales o una población de neuronas. Aquí se presentan los diferentes métodos para la estimulación de cultivos neuronales estampadas por un campo eléctrico producido directamente por los electrodos de baño o inducida por un campo magnético variable en el tiempo.
Una neurona se disparará un potencial de acción cuando su potencial de membrana supera un cierto umbral. En actividad típica del cerebro, esto ocurre como resultado de insumos químicos a sus sinapsis. Sin embargo, las neuronas pueden también ser excitados por un campo eléctrico impuesto. En particular, las aplicaciones clínicas recientes activan las neuronas mediante la creación de un campo eléctrico externo. Por tanto, es de interés para investigar cómo la neurona responde al campo externo y lo que hace que el potencial de acción. Afortunadamente, la aplicación precisa y controlada de un campo eléctrico externo es posible para las células neuronales embrionarias que son extirpados, disociados y crecer en cultivos. Esto permite la investigación de estas preguntas en un sistema altamente reproducible.
En este trabajo algunas de las técnicas utilizadas para la aplicación controlada de campo eléctrico externo en cultivos neuronales se revisan. Las redes pueden ser de una sola dimensión, es decir, modelado en lineaformas R o dejaron crecer en todo el plano del sustrato, y por lo tanto de dos dimensiones. Además, la excitación puede ser creado por la aplicación directa de campo eléctrico a través de electrodos sumergidos en el fluido (electrodos de baño) o induciendo el campo eléctrico usando la creación remota de pulsos magnéticos.
La interacción entre las neuronas y los campos eléctricos externos tiene implicaciones fundamentales, así como los prácticos. Aunque se conoce desde los tiempos de Volta que un campo eléctrico aplicado externamente puede excitar el tejido, los mecanismos responsables de la producción de un potencial de acción resultante en las neuronas sólo se están empezando recientemente a ser desenredado 1, 2, 3, 4. Esto incluye la búsqueda de respuestas a las preguntas sobre el mecanismo que causa la despolarización del potencial de membrana, el papel de propiedades de la membrana y de los canales iónicos, e incluso la región en la neurona que responde al campo eléctrico 2, 5. Therapeutic neuroestimulación 6, 7, 8, 9, 10 metodologías son particularmente dependientes de esta información, que puede ser crucial para la definición de las zonas afectadas y para la comprensión de los resultados de la terapia. Tal entendimiento también puede ayudar en el desarrollo de protocolos de tratamiento y nuevos enfoques para la estimulación de diferentes áreas del cerebro.
La medición de la interacción dentro del cerebro in vivo añade un componente importante para esta comprensión, pero se ve obstaculizada por la imprecisión y baja capacidad de control de las mediciones dentro del cráneo. En contraste, las mediciones en cultivos fácilmente se pueden realizar en gran volumen con alta precisión, excelente señal al rendimiento de ruido y un alto grado de reproducibilidad y de control. Utilizando cultivos una gran variedad de propiedades neuronales del comportamiento de la red colectiva se puede elucidar 11, 12, 13, 14, 15, 16. Del mismo modo, se espera que este sistema bien controlado ser altamente eficiente en elucidar el mecanismo por el cual otros métodos de estimulación trabajo, por ejemplo cómo la apertura del canal durante la estimulación óptica en las neuronas optogenetically activas 17, 18, 19 es responsable de crear potencial de acción.
Aquí la atención se centra en describir el desarrollo y la comprensión de las herramientas que pueden excitar de manera eficiente la neurona a través de un campo eléctrico externo. En este trabajo se describe la preparación de dos dimensiones y unidimensional cultivos de hipocampo estampadas, la estimulación utilizando diferentes configuraciones y orientación de un campo eléctrico aplicado directamente por los electrodos de baño, y finalmente la estimulación de dos dimensiones y modelado culturas unidimensionales por una variable en el tiempo del campo magnético, que induce un campo eléctrico5, 20, 21.
Ética declaración: Los procedimientos que implican la manipulación de animales se realizaron de acuerdo con las directrices del Comité Institucional de Cuidado y Uso de Animales (IACUC) del Instituto de Ciencia Weizmann, y la ley israelí apropiado. El Instituto Weizmann está acreditada por la Asociación para la Evaluación y Acreditación de Laboratorio Animal Care International (AAALAC). El Comité de Cuidado y Uso de Animales institucional Weizmann aprobó este estudio, llevado a cabo con las neuronas del hipocampo.
1. Preparación de dos dimensiones (2D) y unidimensional (1D) cultivos de hipocampo
2. La estimulación eléctrica de las Culturas
NOTA: La configuración básica para la estimulación eléctrica se muestra en la Figura 1. Una hoja de la cubierta en la que el cultivo neuronal se ha cultivado durante aproximadamente 14 días se coloca en una placa de Petri con un microscopio de fluorescencia. La actividad eléctrica de las neuronas se forma la imagen utilizando colorantes sensibles al calcio, mientras que se aplica un voltaje a través de dos pares de electrodos de baño que se colocan fuera de la cultura. Los electrodos son accionados por comogenerador ignal cuya salida es amplificada por un amplificador de canal dual. Control de tensión para la estimulación se prefiere sobre el control de la corriente más estándar 25, 26 debido a que los vectores de campo eléctrico se determinan directamente, permitiendo así que la suma de vectores sencillo y combinación. Esto requiere un cuidadoso control de la uniformidad del campo eléctrico, que puede ser realizada sobre toda la muestra para el caso de control de tensión. Cuando se utiliza el cuidado de control de voltaje se debe tomar para evitar cualquier bucles de tierra y la homogeneidad del campo eléctrico debe ser verificada (ver 2.2 más abajo).
3. Estimulación Magnética de culturas
Nota: La configuración básica para la estimulación magnética se muestra en la Figura 2. En la parte superior derecha se muestraun microscopio de fluorescencia invertida que se utiliza para colorantes sensibles imagen de calcio en las neuronas. La bobina magnética (círculos azules) se coloca aproximadamente 5 mm concéntricamente por encima de una cultura anillo neuronal, (contorno azul). Una bobina de recogida (círculo rojo) en la circunferencia de la placa de Petri supervisa la tensión inducida por el pulso magnético. En la parte superior izquierda se muestra la dinámica de medida de la bobina de estimulador magnético (MS) con una carga de tensión del condensador de 5,000 kV, como integrado a partir de la bobina de recogida. El campo eléctrico inducido (calculado para un radio de anillo de 14 mm) se representa en verde, mientras que el campo magnético se representa en azul. En la parte inferior se muestran las imágenes de la cultura neuronal. En la parte inferior izquierda es una imagen de campo brillante de un patrón de 24 mm cubreobjetos. Las áreas blancas son las neuronas. El patrón fotografiado consta de cultivos de anillos concéntricos con diferentes radios. En la parte inferior derecha es un zoom sobre un segmento corto de los anillos, que muestra las neuronas individuales. Para una escala, wid de los anillosº es de aproximadamente 200 m.
El protocolo presentado permite la fácil patrón de cultivos neuronales. Cuando se combina con varios métodos que hemos desarrollado para la estimulación, que permite hacer mediciones de algunas propiedades de las neuronas intrínsecas tales como cronaxia y Reobase 5, para comparar las propiedades de las neuronas sanas y enfermas 27, para encontrar formas óptimas para estimular las culturas como una función de su estructura y muc...
patrón 1D es una herramienta importante que se puede utilizar para una variedad de aplicaciones. Por ejemplo, hemos utilizado 1D patrón para crear puertas lógicas a partir de cultivos neuronales 29 y más recientemente para medir la cronaxia y Reobase de neuronas de hipocampo de rata 5, y la ralentización de la velocidad de propagación de la señal de la actividad de disparo en Down neuronas síndrome del hipocampo en comparación con el de tipo salvaje (WT) neuronas ...
Los autores declaran que no tienen intereses financieros en competencia.
Los autores agradecen a Ofer Feinerman, Fred Wolf, Menahem Segal, Andreas Neef y Eitan Reuveny de discusiones muy útiles. Los autores agradecen a Ilan Breskin y Jordi Soriano para el desarrollo de las primeras versiones de la tecnología. Los autores agradecen a Tsvi Tlusty y Jean-Pierre Eckmann para obtener ayuda con los conceptos teóricos. Esta investigación fue apoyada por la Fundación Minerva, el Ministerio de Ciencia y Tecnología, Israel, y por la Fundación de Ciencias de Israel subvención 1320-1309 y la beca de la Fundación Nacional de Ciencias Bi-2008331.
Name | Company | Catalog Number | Comments |
APV | Sigma-Aldrich | A8054 | Disconnect the network. Mentioned in Section 2.4.2 |
B27 supp | Gibco | 17504-044 | Plating medium. Mentioned in Section 1.1.1 |
bicuculline | Sigma-Aldrich | 14343 | Disconnect the network. Mentioned in Section 2.4.2 |
Borax (sodium tetraborate decahydrate) | Sigma-Aldrich | S9640 | Borate buffer. Mentioned in Section 1.1.2 |
Boric acid | Frutarom LTD | 5550710 | Borate buffer. Mentioned in Section 1.1.2 |
CaCl2 , 1 M | Fluka | 21098 | Extracellular recording solution. Mentioned in Section 1.5.2 |
CNQX | Sigma-Aldrich | C239 | Disconnect the network. Mentioned in Section 2.4.2 |
COMSOL | COMSOL Inc | Multiphysics 3.5 | Numerical simulation. Mentioned in Section 3.5.2 |
D-(+)-Glucose, 1 M | Sigma-Aldrich | 65146 | Plating medium, Extracellular recording solution. Mentioned in Sections 1.1.1 and 1.5.2 |
D-PBS | Sigma-Aldrich | D8537 | Cell Cultures. Mentioned in Sections 1.2.4 and 1.2.6 |
FCS (FBS) | Gibco | 12657-029 | Plating medium. Mentioned in Section 1.1.1 |
Fibronectin | Sigma-Aldrich | F1141 | Bio Coating. Mentioned in Section 1.2.6 |
Fluo4AM | Life technologies | F14201 | Imaging of spontaneous or evoked activity. Mentioned in Sections 1.5.1, 1.5.3, and 1.5.5 |
FUDR | Sigma-Aldrich | F0503 | Changing medium. Mentioned in Section 1.4.1 |
Gentamycin | Sigma-Aldrich | G1272 | Plating medium, Changing medium, Final medium. Mentioned in Section 1.1.1 |
GlutaMAX 100x | Gibco | 35050-038 | Plating medium, Changing medium, Final medium. Mentioned in Section 1.1.1 |
Hepes, 1 M | Sigma-Aldrich | H0887 | Extracellular recording solution. Mentioned in Section 1.5.2 |
HI HS | BI | 04-124-1A | Plating medium, Changing medium, Final medium. Mentioned in Sections 1.1.1, 1.4.1, and 1.4.2 |
KCl, 3 M | Merck | 1049361000 | Extracellular recording solution. Mentioned in Section 1.5.2 |
Laminin | Sigma-Aldrich | L2020 | Bio Coating. Mentioned in Section 1.2.6 |
MEM x 1 | Gibco | 21090-022 | Plating medium, Changing medium, Final medium. Mentioned in Section 1.4.1 1.4.2 |
MgCl2 , 1 M | Sigma-Aldrich | M1028 | Extracellular recording solution. Mentioned in Section 1.5.2 |
NaCl, 4 M | Bio-Lab | 19030591 | Extracellular recording solution. Mentioned in Section 1.5.2 |
Octadecanethiol | Sigma-Aldrich | 01858 | Cleaning Cr-Au coated coverslips (1D cultures). Mentioned in Section 1.2.3 |
Pluracare F108 NF Prill | BASF Corparation | 50475278 | Bio-Rejection Coating, Bio Coating. Mentioned in Sections 1.2.4 and 1.2.6 |
Poly-L-lysine 0.01% solution | Sigma-Aldrich | P47075 | Promote cell division. Mentioned in Section 1.1.4 |
Sucrose, 1 M | Sigma-Aldrich | S1888 | Extracellular recording solution. Mentioned in Section 1.5.2 |
Thiol | Sigma-Aldrich | 1858 | Bio-Rejection Coating. Mentioned in Section 1.2.3 |
URIDINE | Sigma-Aldrich | U3750 | Changing medium. Mentioned in Section 1.4.1 |
Sputtering machine | AJA International, Inc | ATC Orion-5Series | coating glass with thin layers of metal. Mentioned in Section 1.2.2 |
Pen plotter | Hewlett Packard | HP 7475A | Etching of pattern to the coated coverslip. Mentioned in Section 1.2.5 |
Electrodes wires | A-M Systems, Carlsborg WA | 767000 | Electric stimulation of neuronal cultures. Mentioned in Sections 2.1, 2.2, 2.3, and 2.4.5 |
Signal generator | BKPrecision | 4079 | Shaping of the electric signal. Mentioned in Section 2.3 |
Amplifier | Homemade | Voltage amplification of the signal from the signal generator to the electrodes. Mentioned in Section 2.3 | |
Power supply | Matrix | MPS-3005 LK-3 | Power supply to the sputtering machine. Mentioned in Section 1.2.2.3 |
Transcranial magnetic stimulation | Magstim, Spring Gardens, UK | Rapid 2 | Magnetic stimulation of neuronal culture. Mentioned in Sections 3.1, 3.3, and 3.4 |
Epoxy | Cognis | Versamid 140 | Casting of homemade coils. Mentioned in Section 3.4 |
Epoxy | Shell | EPON 815 | Casting of homemade coils. Mentioned in Section 3.4 |
Platinum wires 0.005'' thick; A-M Systems, | Carlsborg WA | 767000 | Electric stimulation of neuronal cultures. Mentioned in Section 2.1 |
Circular magnetic coil | Homemade | Magnetic stimulation of neuronal culture. Mentioned in Section 3.3 | |
WaveXpress SW | B&K Precision | Waveform editing software. Mentioned in Section 2.1.32 | |
Xion Ultra 897 | Andor | Sensitive EMCCD camera. Mentioned in Section 2.4.4 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados