Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
La audiometría de respuesta evocada por el tronco cerebral es una herramienta importante en la neurofisiología clínica. Hoy en día, la audiometría de respuesta evocada con tronco encefálico también se aplica en la ciencia básica y los estudios preclínicos que involucran modelos animales farmacológicos y genéticos. Aquí proporcionamos una descripción detallada de cómo las respuestas del tronco cerebral auditivo se pueden registrar y analizar con éxito en ratones.
La audiometría de respuesta evocada por el tronco cerebral (BERA) es de importancia central en la neurofisiología clínica. Como otras técnicas de potencial evocada (EP), como los potenciales evocados visualmente (VIP) o los potenciales evocados somatosensoriales (SEP), los potenciales evocados auditivos (PEE) se desencadenan por la presentación repetitiva de estímulos idénticos, el respuesta electroencefalográfica (EEG) de la cual se promedia posteriormente dando lugar a distintas desviaciones positivas (p) y negativas (n). En los seres humanos, tanto la amplitud como la latencia de los picos individuales se pueden utilizar para caracterizar alteraciones en la sincronización y la velocidad de conducción en los circuitos neuronales subyacentes. Es importante destacar que los AAP también se aplican en la ciencia básica y preclínica para identificar y caracterizar la función auditiva en los modelos farmacológicos y genéticos de animales. Aún más, los modelos animales en combinación con pruebas farmacológicas se utilizan para investigar los beneficios potenciales en el tratamiento de la pérdida auditiva neurosensorial (por ejemplo, déficitauditivo inducido por la edad o ruido). Aquí proporcionamos una descripción detallada e integradora de cómo registrar respuestas auditivas evocadas por tronco cerebral (ABR) en ratones usando la aplicación de clic y ráfaga de tono. Un enfoque específico de este protocolo se centra en la vivienda animal preexperimental, la anestesia, la grabación abr, los procesos de filtrado ABR, el análisis automatizado de la función de crecimiento de amplitud basado en ondas y la detección de latencia.
Un aspecto central de la fisiología cerebral es su capacidad para procesar información ambiental que resulta en diferentes resultados intrínsecos o extrínsecos, como el aprendizaje, la memoria, las reacciones emocionales o las respuestas motoras. Se pueden utilizar varios enfoques experimentales y diagnósticos para caracterizar la capacidad de respuesta electrofisiológica de los tipos de células neuronales individuales o grupos/conjuntos de neuronas dentro de un circuito neuronal relacionado con el estímulo. Estas técnicas electrofisiológicas cubren diferentes dimensiones espaciotemporales en la microescala, meso- y macroescala1. El nivel de microescala incluye enfoques de abrazadera de voltaje y corriente en diferentes modos de abrazadera de parche utilizando, por ejemplo, neuronas cultivadas o disociadas agudamente1. Estas técnicas in vitro permiten la caracterización de entidades actuales individuales y su modulación farmacológica2,3. Sin embargo, un inconveniente esencial es la falta de información sistémica en lo que respecta a la integración y el procesamiento de la información de micro y macrocircuitos. Este deterioro se supera parcialmente mediante técnicas in vitro de la mesoescala, como las matrices de multielectrodos que permiten grabaciones simultáneas de multielectrodos extracelulares no sólo en neuronas cultivadas, sino también en rebanadas cerebrales agudas4, 5. Mientras que los microcircuitos se pueden conservar en las rebanadas cerebrales en una medida específica (por ejemplo, en el hipocampo), las interconexiones de largo alcance se pierden típicamente6. En última instancia, para estudiar las interconexiones funcionales dentro de los circuitosneuronales, las técnicas electrofisiológicas sistémicas in vivo en la macroescala son el método de elección 7. Estos enfoques incluyen, entre otras cosas, grabaciones de EEG superficiales (epidural) y profundas (intracerebrales) que se llevan a cabo tanto en los modelos humanos como en los animales1. Las señales EEG se basan predominantemente en la entrada sináptica sincronizada en las neuronas piramidales en diferentes capascorticales que pueden ser inhibitorias o excitatorias en principio, a pesar del predominio general de la entrada excitatoria 8. Tras la sincronización, los cambios excitatorios basados en el potencial postsináptico en campos eléctricos extracelulares se suman para formar una señal de suficiente resistencia para ser registrado en el cuero cabelludo usando electrodos de superficie. En particular, una grabación detectable del cuero cabelludo a partir de un electrodo individual requiere la actividad de diez mil neuronas piramidales y un complejo armamentario de dispositivos técnicos y herramientas de procesamiento, incluyendo un amplificador, procesos de filtrado (filtro de paso bajo, filtro de paso alto, filtro de muesca) y electrodos con propiedades específicas del conductor.
En la mayoría de las especies animales experimentales (es decir, ratones y ratas), el enfoque del EEG del cuero cabelludo basado en el ser humano técnicamente no es aplicable, ya que la señal generada por la corteza subyacente es demasiado débil debido al número limitado de neuronas piramidales sincronizadas9, 10,11. En roedores, los electrodos superficiales (escalpelos) o electrodos subdérmicos están gravemente contaminados por electrocardiograma y, predominantemente, artefactos electromiogramas que hacen imposibles las grabaciones de EEG de alta calidad9,11, 12. Cuando se utiliza ratones y ratas que no se mueven libremente, por lo tanto es obligatorio registrar directamente desde la corteza a través de electrodos epidurales o desde las estructuras intracerebrales profundas para asegurar la conexión física directa de la punta de la punta de la punta de la punta de la punta de la punta de la punta de la punta de la punta del electrodo de plomo/implantado a los cúmulos de células neuronales generadoras de señal. Estos enfoques de EEG se pueden llevar a cabo ya sea en una configuración de sistema de sujeción o utilizando el enfoque de radiotelemetría EEG implantablenoretenible 9,10,11. Ambas técnicas tienen sus pros y sus contras y pueden ser un enfoque valioso en la caracterización cualitativa y cuantitativa de la actividad de susceptibilidad/convulsiones, la rítmico circadiano, la arquitectura del sueño, la actividad oscilatoria y la sincronización, incluyendo análisis de frecuencia-tiempo, análisis de fuentes, etc.9,10,13,14,15,16,17.
Mientras que los sistemas ateados y la radiotelemetría permiten grabaciones de EEG en condiciones de restricción/semirestricción o no restricción, respectivamente, las condiciones experimentales conexas no se ajustan a los requisitos de las grabaciones ABR. Esta última demanda de estímulos acústicos definidos que se presentan de forma repetitiva a lo largo del tiempo con posiciones definidas de un altavoz y los niveles experimentales de presión sonora (SPÁ). Esto se puede lograr ya sea por fijación de la cabeza en condiciones de restricción o después de la anestesia18,19. Para reducir el estrés experimental, los animales normalmente se anestesian durante la experimentación con ABR, pero se debe considerar que la anestesia puede interferir con los ABRs19,20.
Como característica general, el EEG se construye de diferentes frecuencias en un rango de voltaje de 50-100 V. Las frecuencias y amplitudes de fondo dependen en gran medida del estado fisiológico del animal experimental. En el estado despierto, predominan las frecuencias beta (o) y gamma con menor amplitud. Cuando los animales se vuelven somnolientos o se duermen, surgen frecuencias alfa (a), theta y delta, que presentan una mayor amplitud del EEG21. Una vez que se estimula un canal sensorial (por ejemplo, la vía acústica), la propagación de la información se media a través de la actividad neuronal a través del sistema nervioso periférico y central. Esta estimulación sensorial (por ejemplo, acústica) desencadena los llamados EPs o respuestas evocadas. En particular, los potenciales relacionados con eventos (ERP) son mucho menores en amplitud que el EEG (es decir, solo unos pocos microvoltios). Por lo tanto, cualquier ERP individual basado en un solo estímulo se perdería en el fondo EEG de mayor amplitud. Por lo tanto, una grabación de un ERP requiere la aplicación repetitiva de estímulos idénticos (por ejemplo, clics en grabaciones ABR) y el promedio posterior para eliminar cualquier actividad de fondo eEG y artefactos. Si las grabaciones ABR se realizan en animales anestesiados, aquí es fácil utilizar electrodos subdérmicos.
Principalmente, los AEE incluyen ePs de latencia corta, que normalmente están relacionados con los ABP o BERA, y, además, potenciales de inicio posterior, como ePs de latencia media (respuestas de latencia media [MLR]) y EPs de latencia larga22. Es importante destacar que la perturbación en el procesamiento de la información auditiva es a menudo una característica central de las enfermedades neuropsiquiátricas (enfermedades desmielinizantes, esquizofrenia, etc.) y asociada con alteraciones de la AEP23,24 ,25. Mientras que las investigaciones conductuales sólo son capaces de revelar deterioro funcional, los estudios AEP permiten un análisis espaciotemporal preciso de la disfunción auditiva relacionada con estructuras neuroanatómicas específicas26.
Los ABR a principios de la latencia corta, los ePs acústicos de latencia corta se detectan normalmente en la aplicación de clic moderada a alta intensa, y puede ocurrir hasta siete picos ABR (WI-WVII). Las ondas más importantes (WI-WV) están relacionadas con las siguientes estructuras neuroanatómicas: WI al nervio auditivo (parte distal, dentro del oído interno); WII al núcleo coclear (porción proximal del nervio auditivo, terminación del tronco encefálico); WIII al complejo olivario superior (SOC); WIV al lemnisco lateral (LL); WV a la terminación del lemnisco lateral (LL) dentro del colículo inferior (IC) en el lado contralateral27 (Figurasuplementaria 1). Cabe señalar que WII-WV es probable que tenga más de una estructura anatómica de la vía auditiva ascendente que contribuye a ellos. En particular, la correlación exacta de picos y estructuras subyacentes del tracto auditivo todavía no se aclara completamente.
En audiología, los ABRs se pueden utilizar como herramienta de cribado y diagnóstico y para la monitorización quirúrgica28,29. Es más importante para la identificación de la disacusis, la hipacusis y la anacusis (por ejemplo, en la pérdida auditiva relacionada con la edad, la pérdida auditiva inducida por ruido, la pérdida auditiva metabólica y congénita, y la pérdida auditiva asimétrica y los déficits auditivos debido a deformes o malformaciones, lesiones y neoplasias)28. Los ABR también son relevantes como prueba de detección para niños hiperactivos con discapacidad intelectual o para otros niños que no serían capaces de responder a la audiometría convencional (por ejemplo, en enfermedades neurológicas/psiquiátricas como el TDAH, la SM, el autismo, etc.29. , 30) y en el desarrollo y montaje quirúrgico de implantes cocleares28. Por último, los ABR pueden proporcionar información valiosa sobre los posibles efectos secundarios ototóxicos de los neuropsicofarmacéuticos, como los antiepilépticos31,32.
El valor de la traducción de los conocimientos neurofisiológicos obtenidos de modelos de ratón farmacológicos o transgénicos a seres humanos se ha demostrado en numerosos entornos, en particular en el nivel de ERPs en paradigmas auditivos en ratones y ratas33, 34,35. Una nueva visión de los AAP tempranos alterados y los cambios asociados en el procesamiento de información auditiva en ratones y ratas pueden traducirse a los seres humanos y es de importancia central en la caracterización y endofenotipación de auditor, neurológico y enfermedades neuropsiquiátricas en el futuro. Aquí proporcionamos una descripción detallada de cómo los BBR pueden ser registrados y analizados con éxito en ratones para fines científicos básicos, toxicológicos y farmacológicos.
Todos los procedimientos de animales se realizaron de acuerdo con las directrices del Consejo Alemán de Cuidado de Animales y todos los protocolos fueron aprobados por el comité institucional y nacional local de cuidado de animales (Landesamt f'r Natur, Umwelt, und Verbraucherschutz, Estado Oficina de Renania del Norte-Westfalia, Departamento de Naturaleza, Medio Ambiente y Consumismo [LANUV NRW], Alemania). Los autores certifican además que toda la experimentación con animales se llevó a cabo de conformidad con la Guía de Los Institutos Nacionales de Salud para el Cuidado y Uso de Animales de Laboratorio (NIH Publications No 80-23) revisada de 1996 o la Ley de Animales del Reino Unido (Procedimientos Científicos) 1986 y las directrices asociadas, o la Directiva del Consejo de las Comunidades Europeas de 24 de noviembre de 1986 (86/609/CEE) y de 22 de septiembre de 2010 (2010/63/UE). Se hicieron esfuerzos específicos para minimizar el número de animales utilizados y su sufrimiento (estrategia 3R [de reemplazo, reducción y refinamiento]).
1. Animales experimentales
2. Anestesia del ratón
3. Aspectos generales de los arreglos e instrumentación perianestésicos
4. Grabaciones ABR
NOTA: El protocolo descrito aquí se basa en un sistema ABR disponible comercialmente para grabaciones monoaurales y binaurales. Es importante destacar que la cuestión científica que debe abordarse debe cumplir las especificaciones técnicas del sistema ABR utilizado. El análisis ABR de grabaciones binaurales, por ejemplo, se puede utilizar para investigar la codificación lateral de estímulos auditivos en la vía auditiva y para estudiar la asimetría lateral periférica en enfermedades neuropsiquiátricas.
5. Análisis ABR
6. Atención postoperatoria y tratamiento post-ABR
Las grabaciones ABR evocadas por ráfagas de tono y clic se pueden utilizar para evaluar las diferencias de umbral auditivo, la función de crecimiento de amplitud y la comparación de latencia. Los ABRs con evocados por clics en el modo de aumento de SPL se representan en la Figura 1 para los controles y dos líneas de ratón mutantes ejemplares que son deficientes para el canal Ca2+ con voltaje de tipo T de Cav3.2 (es decir, Cav
Este protocolo proporciona una descripción detallada e integradora de cómo registrar las respuestas del tronco cerebral evocadas auditivas en ratones. Pone especial atención en el pretratamiento animal, la anestesia y los posibles factores de confunción metodológica. Estos últimos incluyen, entre otros, el género, la línea del ratón, la edad y las condiciones de vivienda. Cabe señalar que todos estos factores pueden tener un impacto en la pérdida auditiva neurosensorial y en los aspectos fundamentales del proc...
Los autores no tienen nada que revelar.
Los autores desean agradecer a la Dra. Christina Kolb (Centro Alemán de Enfermedades Neurodegenerativas [DZNE]) y al Dr. Robert Stark (DZNE) por su asistencia en la cría de animales y el cuidado de la salud animal. Este trabajo fue apoyado financieramente por el Instituto Federal de Drogas y Dispositivos Médicos (Bundesinstitut f'r Arzneimittel und Medizinprodukte, BfArM, Bonn, Alemania).
Name | Company | Catalog Number | Comments |
AEP/OAE Software for RZ6 (BioSigRZ software) | Tucker-Davis Technologies (TDT) | BioSigRZ | |
Binocular surgical magnification microscope | Zeiss Stemi 2000 | 0000001003877, 4355400000000, 0000001063306, 4170530000000, 4170959255000, 4551820000000, 4170959040000, 4170959050000 | |
Cages (Macrolon) | Techniplast | 1264C, 1290D | |
Carprox vet, 50mg/ml | Virbac Tierarzneimittel GmbH | PZN 11149509 | |
Cold light source | Schott KL2500 LCD | 9.705 202 | |
Cotton tip applicators (sterile) | Carl Roth | EH12.1 | |
Custom made meshed metal Faraday cage (stainless steel, 2 mm thickness, 1 cm mesh size) | custom made | custom made | |
5% Dexpanthenole (Bepanthen eye and nose creme) | Bayer Vital GmbH | PZN: 01578681 | |
Disposable Subdermal stainless steel Needle electrodes, 27GA, 12mm | Rochester Electro-Medical, Inc. | S03366-18 | |
Surgical drape sheets (sterile) | Hartmann | PZN 0366787 | |
Ethanol, 70% | Carl Roth | 9065.5 | |
1/4'' Free Field Measure Calibration Mic Kit | Tucker-Davis Technologies (TDT) | PCB-378C0 | |
Gloves (sterile) | Unigloves | 1570 | |
Graefe Forceps-curved, serrated | FST | 11052-10 | |
GraphPad Prism 6 Software, V6.07 | GraphPad Prism Software, Inc. | https://www.graphpad.com/ | |
Heat-based surgical instrument sterilizer | FST | 18000-50 | |
Homeothermic heating blanked | ThermoLux | 461265 / -67 | |
Ketanest S (Ketamine), 25mg/ml | Pfizer | PZN 08707288 | |
Ringer’s solution (sterile) | B.Braun | PZN 01471434 | |
Matlab software | MathWorks, Inc. | https://de.mathworks.com/products/matlab.html | |
Medusa 4-Channel Low Imped. Headstage | Tucker-Davis Technologies (TDT) | RA4LI | |
Medusa 4-Channel Pre-Amp/Digitizer | Tucker-Davis Technologies (TDT) | RA4PA | |
Microphone | PCB Pieztronics | 378C01 | |
Multi Field Speaker- Stereo | Tucker-Davis Technologies (TDT) | MF1-S | |
Oscilloscope | Tektronix | DPO3012 | |
Optical PC1 express card for Optibit Interface) | Tucker-Davis Systems (TDT) | PO5e | |
Askina Braucel pads (cellulose absorbet pads) | B.Braun | PZN 8473637 | |
Preamplifier | PCB Pieztronics | 480C02 | |
RZ6 Multi I/O Processor system (BioSigRZ) | Tucker-Davis Technologies (TDT) | RZ6-A-PI | |
0.9% saline (NaCl, sterile) | B.Braun | PZN:8609255 | |
SigGenRZ software | Tucker-Davis Technologies (TDT) | https://www.tdt.com/ | |
Software R (version 3.2.1) + Reshape 2 (Version 1.4.1) + ggplot 2 (version 1.0.1) + datatable (version 1.9.4), + gdata (version 2.13.3), + pastecs (version 1.3.18), + waveslim (version 1.7.5), + MassSpecWavelet (version 1.30.0) | The R Foundation, R Core Team 2015 | Open Source Software (freely distributable) | |
Sound attenuating cubicle | Med Associates Inc. | ENV-018V | |
Standard Pattern Forceps, 12cm and 14.5 cm length | FST | 11000-12, 11000-14 | |
Leukosilk tape | BSN medical GmbH & Co. KG | PZN 00397109 | |
Tissue Forceps- 1x2 Teeth 12 cm | FST | 11021-12 | |
Uniprotect ventilated cabinet | Bioscape | THF3378 | |
Ventilated cabinet | Tecniplast | 9AV125P | |
Xylazine (Rompun), 2% | Bayer Vital GmbH | PZN 1320422 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados