Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
Aquí, presentamos un protocolo optimizado para obtener imágenes de ovarios enteros para análisis cuantitativos y cualitativos utilizando inmunotinción de montaje completo, microscopía multifotónica y visualización y análisis 3D. Este protocolo se adapta al procesamiento de alto rendimiento, confiable y repetible que es aplicable para toxicología, diagnóstico clínico y ensayos genómicos de la función ovárica.
La fertilidad femenina y la esperanza reproductiva dependen de la calidad y cantidad de la reserva ovárica de ovocitos. Se estima que el 80% de las células germinales femeninas que entran en la profase I meiótica se eliminan durante el desgaste fetal de ovocitos (FOA) y la primera semana de vida postnatal. Tres mecanismos principales regulan el número de ovocitos que sobreviven durante el desarrollo y establecen la reserva ovárica en las mujeres que entran en la pubertad. En la primera ola de pérdida de ovocitos, el 30-50% de los ovocitos se eliminan durante la FOA temprana, un fenómeno que se atribuye a la alta expresión del elemento nuclear largo intercalado-1 (LINE-1). La segunda ola de pérdida de ovocitos es la eliminación de ovocitos con defectos meióticos mediante un punto de control de calidad meiótica. La tercera ola de pérdida de ovocitos ocurre perinatalmente durante la formación del folículo primordial cuando algunos ovocitos no logran formar folículos. No está claro qué regula cada una de estas tres ondas de pérdida de ovocitos y cómo dan forma a la reserva ovárica en ratones o humanos.
La inmunofluorescencia y la visualización 3D han abierto una nueva vía para obtener imágenes y analizar el desarrollo de ovocitos en el contexto de todo el ovario en lugar de en secciones 2D menos informativas. Este artículo proporciona un protocolo completo para la inmunotinción de ovario completo y la limpieza óptica, lo que produce preparaciones para la obtención de imágenes utilizando microscopía multifotónica y modelado 3D utilizando software disponible comercialmente. Muestra cómo este método se puede utilizar para mostrar la dinámica del desgaste de los ovocitos durante el desarrollo ovárico en ratones C57BL / 6J y cuantificar la pérdida de ovocitos durante las tres ondas de eliminación de ovocitos. Este protocolo se puede aplicar a los ovarios prenatales y postnatales tempranos para la visualización y cuantificación de ovocitos, así como a otros enfoques cuantitativos. Es importante destacar que el protocolo se desarrolló estratégicamente para acomodar el procesamiento de alto rendimiento, confiable y repetible que puede satisfacer las necesidades en toxicología, diagnóstico clínico y ensayos genómicos de la función ovárica.
La mayoría de las hembras de mamíferos nacen con un número finito de ovocitos detenidos meóicamente almacenados dentro de los folículos primordiales, constituyendo la reserva ovárica (OR)1,2. El quirófano determina la esperanza de vida reproductiva y la salud reproductiva femenina en general3. El quirófano normalmente disminuye de tamaño con el envejecimiento y puede agotarse prematuramente tras la exposición a ciertos agentes genotóxicos (radiación/quimioterapia) y estrés ambiental (desnutrición), lo que lleva a la infertilidad 4,5,6. La infertilidad femenina idiopática a menudo se puede atribuir a la calidad genética y fisiológica de los óvulos que se desarrollan a partir del quirófano y sigue siendo poco conocida 7,8. Debido a que la dotación del folículo femenino está en gran medida predeterminada por el nacimiento, es esencial comprender los mecanismos reguladores involucrados en el establecimiento y mantenimiento del quirófano.
En ratones, la formación de QUIR comienza con la especificación de células germinales primordiales (PGC) alrededor del día embrionario (E) 7.52. Los PGC migran a las crestas genitales, donde residirán aproximadamente en E10.59. La siguiente proliferación extensa ocurre con citocinesis incompleta que resulta en la formación de quistes que se descompondrán más adelante en el desarrollo10,11. Aproximadamente en E12.5, se determina el sexo gonadal y la proliferación de PGC se detiene en los ovarios. En las mujeres, los PGC, ahora ovocitos, entran en la profase I meiótica (IPM) en aproximadamente E13,5 12,13. Los ovocitos progresan a través de un IPM extendido y se detienen en la etapa de dictyate alrededor del momento del nacimiento. Durante la primera semana después del nacimiento, cada ovocito detenido está rodeado de células de granulosa, formando así un folículo primordial.
El número de folículos primordiales en el quirófano de una hembra depende de cuántos ovocitos sobrevivieron a las ondas de eliminación de ovocitos que ocurren antes y durante la detención de MPI a través de apoptosis, autofagia o necrosis14,15. La primera ola ocurre durante el desarrollo fetal y se conoce como FOA. La FOA es un proceso conservado evolutivamente en hembras (mamíferos y no mamíferos), por el cual se estima que el 50-80% de los ovocitos se eliminan dependiendo de la especie femenina 16,17,18,19. En ratones, la FOA ocurre durante E15.5 a E18.5 y se ha atribuido a la reactivación y expresión de secuencias de retrotransposones LINE-1 causando la muerte de ovocitos20,21. La segunda ola de eliminación de ovocitos se produce a través de un punto de control meiótico que elimina ovocitos con defectos meióticos como roturas de doble cadena de ADN no reparadas (DSB)22,23. La siguiente ola de eliminación de ovocitos ocurre durante la descomposición del quiste, culminando durante la formación de folículos primordiales, cada uno de los cuales contiene un solo ovocito 10,11,24,25.
En ratones, la reserva del folículo primordial se establece en gran medida por la pubertad, después de lo cual disminuye a medida que los folículos primordiales se activan para el crecimiento durante los ciclos reproductivos regulares. El tamaño del quirófano varía entre las mujeres individuales y entre las diferentes cepas genéticas de ratones; sin embargo, la regulación genética del tamaño del quirófano no se entiende bien 26,27,28,29. Los estudios genéticos de la regulación del quirófano se ven obstaculizados por la falta de protocolos estandarizados para estudiar las ondas de eliminación de ovocitos durante el desarrollo prenatal y postnatal. Se han desarrollado varias metodologías de cuantificación de ovocitos en ratones, siendo la más común y ampliamente utilizada la evaluación histomorfométrica de las secciones histológicas30,31. En esta técnica, los ovocitos se identifican en secciones seriadas con tinciones histológicas, como hematoxilina y eosina (H&E) y ácido-Schiff periódico (PAS) o marcadores fluorescentes. Esta técnica es confiable si todas las condiciones permanecen constantes, incluido el grosor de la sección, la recuperación eficiente de todas las secciones en todo el ovario y los esquemas de conteo de laboratorios individuales. Sin embargo, los números reportados por diferentes laboratorios a menudo difieren significativamente y, por lo tanto, no son fácilmente comparables.
Además, dadas las diferencias genéticas, el uso de diferentes cepas de ratón también puede influir en los recuentos de ovocitos. Se han desarrollado enfoques computacionales adicionales para la evaluación histomorfométrica e incluyen la detección automatizada de ovocitos utilizando el enfoque fraccionador, el conteo automático utilizando algoritmos computacionales y la reconstrucción 3D de imágenes histológicas para evitar recuentos múltiples del mismo ovocito 31,32,33,34,35,36 . Incluso con estas mejoras añadidas a la evaluación histomorfométrica, la técnica es relativamente laboriosa, particularmente para estudios a gran escala y de alto rendimiento. Los datos recopilados pueden no ser reproducibles y comparables entre los estudios debido a las diferencias en los esquemas de conteo, los algoritmos informáticos y el software utilizado.
Recientemente, acelerado por el desarrollo de nuevos métodos de microscopía multifotónica y de hoja de luz de resolución media y de limpieza óptica de tejidos, las técnicas de modelado y análisis 3D para ovarios intactos se están convirtiendo en el método de elección para cuantificar eficientemente el número de ovocitos y estudiar la localización y dinámica de proteínas37,38. Estos métodos 3D suelen ser ventajosos en comparación con los métodos histológicos, ya que los tejidos y órganos se conservan mejor y se mantienen intactos. Además, el análisis y el modelado 3D proporcionan información adicional sobre la función y las interacciones dentro y entre los nichos celulares o subestructuras dentro del órgano que pueden perderse en el análisis 2D.
El análisis 3D de órganos completos requiere la optimización de los protocolos de fijación, inmunotinción y limpieza óptica para órganos individuales, como los ovarios, sin distorsión o daño tisular. Se requiere una optimización adicional del montaje de muestras para imágenes para microscopía de alta resolución y puede depender de la plataforma de imágenes disponible. Finalmente, la imagen de todo el ovario intacto genera una gran cantidad de datos para análisis computacionales posteriores. Por lo tanto, existe la necesidad de desarrollar métodos 3D estandarizados para contar ovocitos para estudios comparativos y en todas las etapas de desarrollo.
Este protocolo utiliza inmunotinción estándar y protocolos de limpieza previamente informados, centrándose en un enfoque simple, fácil de usar y de alto rendimiento 38,39,40,41. El protocolo está optimizado para analizar un gran número de ovarios prenatales y postnatales hasta el día 28 postnatal (P28) y diferentes tamaños de ovarios de diferentes antecedentes genéticos de ratón. Los pasos de inmunotinción son similares para todas las etapas; sin embargo, los protocolos de aclaramiento difieren para los ovarios puberales debido a su mayor tamaño, ScaleS4(0) y CUBIC para ovarios pequeños y grandes, respectivamente40,41. Además, la perfusión de todo el cuerpo se realiza en ratones P28 antes de la fijación para prevenir la autofluorescencia de las células sanguíneas. Se construyó un microscopio multifotónico en la plataforma Leica DIVE/4Tune como alternativa a la microscopía de hojas de luz para adquirir imágenes, y se eligió el software de Visualización y Análisis 3D IMARIS con diversas herramientas analíticas para este protocolo. Este protocolo es fácil de seguir y menos práctico, por lo tanto, ahorra tiempo. Además, la cuantificación de ovocitos es relativamente rápida, dependiendo del tamaño del ovario y la disposición de los ovocitos.
Todos los ratones utilizados eran de la cepa genética C57BL/6J (ver la Tabla de Materiales). Esta cepa ha sido completamente secuenciada y es estándar para muchos estudios sobre la estructura y función ovárica. Los ratones fueron alojados de acuerdo con las pautas de los NIH, y los procedimientos realizados fueron aprobados por el Comité Institucional de Cuidado y Uso de Animales del Laboratorio Jackson. Los reactivos y composiciones utilizados en este protocolo se enumeran en la Tabla de Materiales y en la Tabla 1, respectivamente.
1. Preparación de reactivos
2. Disección y fijación de ovarios prenatales (Figura 1A)
3. Disección y fijación de ovarios prepúberes (Figura 1B)
4. Perfusión, disección y fijación de ovarios puberales (Figura 1C)
5. Inmunotinción de ovario de montaje completo (Figura 2A)
NOTA: Practique técnicas estériles durante el protocolo de inmunotinción, especialmente al cambiar los tampones, para evitar la contaminación durante períodos de incubación prolongados.
6. Limpieza de ovarios de montura entera inmunoteñidos (Figura 2A).
NOTA: Realice todos los pasos de limpieza en la oscuridad envolviendo las placas en papel de aluminio o colocándolas en recipientes opacos. Los pasos de limpieza difieren para los ovarios prepúberes y puberales.
7. Configuración de muestras e imágenes con un microscopio multifotónico
NOTA: Todos los pasos descritos a continuación se realizaron con un Leica DIVE/4TUNE/FALCON con dos láseres multifotón Ti:Sapphire sintonizables bloqueados en modo con una duración de pulso de 120 fs con un objetivo multiinmersión 16x/NA0.6 (líquido de inmersión = glicerol) con una distancia de trabajo máxima de 2,2 mm. Consulte la Tabla de materiales para obtener detalles sobre el software de adquisición de imágenes. La Tabla suplementaria S1 y la Figura suplementaria S1 muestran la configuración utilizada para este protocolo. Para otras plataformas de imágenes, consulte con el núcleo de microscopía o siga las especificaciones / recomendaciones de los fabricantes.
8. Procesamiento de imágenes
NOTA: Todos los pasos descritos a continuación se desarrollaron y realizaron utilizando el software de visualización y análisis de imágenes 3D IMARIS.
9. Cuantificación de ovocitos
NOTA: La inmunofluorescencia de ovario completo y la visualización y análisis de imágenes 3D se pueden utilizar para la estimación del número de ovocitos en ovarios enteros (Figura 3 y Figura 4) utilizando la función Spot. La señal GCNA se puede utilizar para cuantificar ovocitos en ovarios prenatales y prepúberes, como se muestra en la Figura 4 (P5). En los ovarios puberales, utilice la señal DDX4 para cuantificar dos poblaciones de ovocitos en folículos que no crecen ("estructura en forma de anillo", flecha cerrada) y folículos en crecimiento (estructuras grandes, flecha abierta, Figura 4, P28).
10. Cuantificación de la expresión de proteínas en los ovarios
NOTA: Hay varias maneras de cuantificar la expresión de ovocitos de marcadores específicos utilizando tanto la función Manchas (sección 9 y paso 10.1) como la función Superficies (paso 10.2). La función Manchas se puede usar para proteínas con patrones de localización distintos, como marcadores nucleares (GCNA), y la función Superficies se puede usar para proteínas con patrones de localización no uniformes como se muestra en la Figura 5A , donde se midieron las intensidades LINE-1 ORF1p en los ovarios E15.5 y E18.5. Para calcular y comparar la intensidad de la proteína de interés entre dos muestras (por ejemplo, puntos de tiempo, tratamientos o genotipos), recopile imágenes con las mismas propiedades. Utilice muestras con una señal más intensa para determinar los parámetros que se pueden almacenar y utilizar para las otras muestras.
11. Estimación del número total de ovocitos en ovario dañado con corrección computacional
NOTA: Si se produce un daño ovárico menor durante la disección, puede ser posible estimar computacionalmente el recuento total de ovocitos. Se recomienda utilizar ovarios intactos de la misma cepa y etapa de desarrollo para la estimación del número de ovocitos como se muestra en la Figura 6. Las simulaciones realizadas con ovarios en E15.5 indican que la corrección de una pérdida del ≥30% resulta en una desviación significativa de los números reales (Figura 6C).
La inmunotinción e imagen de todo el ovario permite la visualización y cuantificación de ovocitos o expresión de proteínas en ovarios en diferentes etapas de desarrollo utilizando la misma técnica y marcadores (Figura 3). Este protocolo fue desarrollado para un proyecto a gran escala en el que se requirió el análisis de ovarios en múltiples etapas y a partir de múltiples cepas de ratón. Aquí, presentamos los datos recopilados para la cepa C57BL6 / J, una cepa estándar para el an...
Este artículo presenta un protocolo detallado de inmunotinción e imágenes 3D para ovarios prenatales y postnatales para estudios comparativos y de alto rendimiento para la cuantificación de células germinales y la localización de proteínas. Desarrollamos este protocolo para analizar el número de ovocitos en ovarios (N = 6-12) en seis puntos de tiempo de desarrollo en 10-16 cepas diferentes, donde 2-4 placas de 24 pocillos se procesan típicamente a la vez. Este método se puede adaptar para otros órganos o marca...
Los autores no tienen conflictos de intereses que revelar.
Este trabajo fue apoyado por las subvenciones de los Institutos Nacionales de Salud (R01 HD093778 a E.B-F y T32 HD007065 a R.B). Agradecemos a Zachary Boucher por su ayuda con el experimento de radiación. Agradecemos a Mary Ann Handel por la lectura crítica del manuscrito. Agradecemos la contribución de Sonia Erattupuzha y el Servicio Básico de Microscopía en el Laboratorio Jackson por la asistencia experta con el trabajo de microscopía descrito en esta publicación y Jarek Trapszo de los Servicios de Instrumentos Científicos en el Laboratorio Jackson por diseñar la diapositiva del adaptador impresa en 3D.
Name | Company | Catalog Number | Comments |
Benchtop Incubator | Benchmark Scientific | H2200-H | 37 °C incubator |
Bovine Serum Albumin (BSA) | VWR | 97061-416 | |
C57BL/6J | The Jackson Laboratory | 000664 | mouse inbred strain |
Dimethyl sulfoxide (DMSO) | Sigma-Aldrich | D1435 | Hazardous material |
D-Sorbitol | Sigma-Aldrich | S6021 | |
Dumont #5 Forceps | FST | 91150-20 | |
FastWells Reagent Barriers | GraceBio | 664113 | Sticky and flexible silicone gasket (adhesive well) |
Fine Scissors | FST | 91460-11 | |
Glycerol | Sigma-Aldrich | G2025 | |
Glycine | ThermoFisher Scientific | BP381-500 | |
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 | Invitrogen | A-21246 | Dilution 1:1000 |
Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 | Invitrogen | A-21434 | Dilution 1:1000 |
Goat serum | Sigma-Aldrich | G9023 | |
IMARIS Software | Oxford Instruments | Version 9.7.0 | Image visualization and analysis software |
Insight X3 | Spectra-Physics | InSight X3 Tunable Ultrafast Laser | Laser for Multiphoton Imaging |
LASX software | Leica | Version 3.5.6 | Image acquisition software |
Leica DIVE/4TUNE/FALCON | Leica | Leica Dmi8, 2P-M-ready: # 158005406 | Multiphoton Microscope |
MaiTai HP | Spectra-Physics | Mai Tai DeepSee One Box Ultrafast Laser | Laser for Multiphoton Imaging |
Masterflex Pump Controller | SPW Industrial | Model: 7553-50 | Peristaltic pump for perfusion |
Mayo Scissors | FST | 14010-17 | 5” –7” blunt/blunt scissors for decapitation |
Micro Cover Glasses, Square, No. 1.5 25x25mm | VWR | 48366-249 | |
Mini BioMixer | Benchmark Scientific | B3D1020 | shaker/nutator for 37 °C incubator |
Nikon Ergonomic SMZ1270 | Leica | SMZ1270 | stereomicroscope |
Paraformaldehyde 16% (formaldehyde aqueous solution) | Electron Microscopy Sciences | 15710 | Hazardous material |
PBS Tablets, Phosphate-buffered Saline | ThermoFisher Scientific | BP2944100 | Dissolve in Milli-Q water |
Penicillin-Streptomycin, 200x, Dual Antibiotic Solution | ThermoFisher Scientific | ICN1670249 | |
Polyvinyl alcohol (PVA) | Sigma-Aldrich | P8136 | |
Quadrol (N,N,N′,N′-Tetrakis(2-Hydroxypropylethylenediamine) | Sigma-Aldrich | 122262 | |
Rabbit anti-DDX4/MVH | Abcam | ab27591 | Dilution 1:500 |
Rabbit anti-LINE-1 ORF1p | Abcam | ab216324 | Dilution 1:500 |
Rat anti-TRA98/GCNA | Abcam | ab82527 | Dilution 1:500 |
Sodium azide | Sigma-Aldrich | S2002 | Hazardous material |
Sodium borohydride | Sigma-Aldrich | 452882 | Hazardous material |
Sucrose | ThermoFisher Scientific | S0389 | |
Tekmar Orbital Shaker | Bimedis | VXR-S10 | shaker for room temperature |
Triethanolamine | Sigma-Aldrich | 90279 | |
Triton X-100 | Sigma-Aldrich | X100 | |
UNOLOK Infusion Set | MYCO Medical | 7001-23 | needles for perfusion |
Urea | Amresco | 97061-920 | |
X-Cite 120LED | Excelitas | S/N XT640-W-0147 | low-power LED fluorescence lamp |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados