Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Los organoides intestinales derivados de biopsias y las tecnologías de organ-on-a-chips se combinan en una plataforma microfisiológica para recapitular la funcionalidad intestinal específica de la región.
La mucosa intestinal es una barrera física y bioquímica compleja que cumple una miríada de funciones importantes. Permite el transporte, la absorción y el metabolismo de nutrientes y xenobióticos, al tiempo que facilita una relación simbiótica con la microbiota y restringe la invasión de microorganismos. La interacción funcional entre varios tipos de células y su entorno físico y bioquímico es vital para establecer y mantener la homeostasis del tejido intestinal. Modelar estas interacciones complejas y la fisiología intestinal integrada in vitro es un objetivo formidable con el potencial de transformar la forma en que se descubren y desarrollan nuevas dianas terapéuticas y candidatos a fármacos.
Los organoides y las tecnologías Organ-on-a-Chip se han combinado recientemente para generar chips intestinales relevantes para el ser humano adecuados para estudiar los aspectos funcionales de la fisiología intestinal y la fisiopatología in vitro. Los organoides derivados de las biopsias del intestino delgado (duodeno) y grueso se siembran en el compartimento superior de un chip de órgano y luego se expanden con éxito como monocapas mientras preservan las características celulares, moleculares y funcionales distintivas de cada región intestinal. Las células endoteliales microvasculares específicas del tejido del intestino humano se incorporan en el compartimento inferior del chip del órgano para recrear la interfaz epitelial-endotelial. Esta novedosa plataforma facilita la exposición luminal a nutrientes, fármacos y microorganismos, lo que permite estudios de transporte intestinal, permeabilidad e interacciones huésped-microbio.
Aquí, se proporciona un protocolo detallado para el establecimiento de chips intestinales que representan el duodeno humano (chip de duodeno) y el colon (chip de colon), y su posterior cultivo bajo flujo continuo y deformaciones similares a la peristalsis. Demostramos métodos para evaluar el metabolismo de fármacos y la inducción de CYP3A4 en chip duodeno utilizando inductores y sustratos prototípicos. Por último, proporcionamos un procedimiento paso a paso para el modelado in vitro de la interrupción de la barrera mediada por interferón gamma (IFNγ) (síndrome del intestino permeable) en un chip de colon, incluidos los métodos para evaluar la alteración de la permeabilidad paracelular, los cambios en la secreción de citoquinas y el perfil transcriptómico de las células dentro del chip.
El intestino humano es un órgano complejo y multitarea capaz de autorregenerarse. Se divide en el intestino delgado y grueso. La función principal del intestino delgado es digerir aún más los alimentos que provienen del estómago, absorber todos los nutrientes y pasar el residuo al intestino grueso, que recupera el agua y los electrolitos. El intestino delgado se divide en múltiples regiones anatómicamente distintas: el duodeno, el yeyuno y el íleon, cada uno de los cuales está adaptado para realizar funciones específicas. Por ejemplo, el duodeno ayuda a descomponer el quimo (contenido del estómago) para permitir la absorción adecuada de nutrientes que involucran prote....
NOTA: Todos los cultivos celulares deben manejarse utilizando una técnica aséptica adecuada.
Los organoides intestinales humanos empleados en este estudio se obtuvieron de la Universidad Johns Hopkins y todos los métodos se llevaron a cabo de acuerdo con las pautas y regulaciones aprobadas. Todos los protocolos experimentales fueron aprobados por la Junta de Revisión Institucional de la Universidad Johns Hopkins (IRB #NA 00038329).
1. Preparación de los reactivos de cultivo celular
La Figura 1D resume la línea de tiempo del cultivo de chips intestinales e ilustra las células endoteliales intestinales y los organoides antes y después de la siembra en el chip. Además, demuestra las diferencias morfológicas distintivas entre las virutas de duodeno y colon, destacadas por la presencia de formaciones similares a vellosidades en la vilipruta de duodeno y representativas de la arquitectura del intestino delgado.
La Figura .......
La combinación de la tecnología de órganos en un chip y los organoides intestinales es prometedora para el modelado preciso de la fisiología intestinal humana y la fisiopatología. Aquí, proporcionamos un protocolo paso a paso simple y robusto (descrito en la Figura 1) para el establecimiento del chip intestinal que contiene epitelio intestinal delgado o colónico derivado de la biopsia y células endoteliales microvasculares intestinales cocultivadas en un dispositivo microfluídico. E.......
Gauri Kulkarni, Athanasia Apostolou, Lorna Ewart, Carolina Lucchesi y Magdalena Kasendra son empleadas actuales o anteriores de Emulate Inc. y pueden tener acciones. Emulate Inc. es la compañía que fabrica los dispositivos de chips de órganos y ha publicado patentes relevantes para el trabajo establecido en este artículo.
Agradecemos al profesor Mark Donowitz por proporcionar los organoides derivados de la biopsia intestinal y a Brett Clair por diseñar las ilustraciones científicas del chip, el módulo portátil y de cultivo. Todo el resto de las ilustraciones científicas se generaron utilizando el BioRender.
....Name | Company | Catalog Number | Comments |
small intestine Human Intestinal Microvascular Endothelial Cells | AlphaBioRegen | ALHE15 | 0.5 cells M/ml ; cryopreserved |
colon Human Intestinal Microvascular Endothelial Cells | AlphaBioRegen | ALHE16 | 0.5 cells M/ml ; cryopreserved |
Biopsy-derived Human Duodenal Organoids | John Hopkin's University | - | The organoids were provided by Professor Mark Donowitz (Institutional Review Board Number: NA_00038329). |
Biopsy-derived Human Colonic Organoids | John Hopkin's University | - | The organoids were provided by Professor Mark Donowitz (Institutional Review Board Number: NA_00038329). |
Zoë CM-1™ Culture Module | Emulate Inc. | - | Culture module |
Orb-HM1™ Hub Module | Emulate Inc. | - | 5% CO2, vacuum stretch, and power supply |
Chip-S1™ Stretchable Chip | Emulate Inc. | - | Organ-Chip |
Pod™ Portable Modules | Emulate Inc. | - | Portable module |
UV Light Box | Emulate Inc. | - | - |
Chip Cradle | Emulate Inc. | - | 1 per square culture dish |
Steriflip®-HV Filters | EMD Millipore | SE1M003M00 | 0.45 μm PVDF filter |
Square Cell Culture Dish (120 x 120 mm) | VWR | 82051-068 | - |
Handheld vacuum aspirator | Corning | 4930 | - |
Aspirating pipettes | Corning / Falcon | 357558 | 2 mL, polystyrene, individually wrapped |
Aspirating tips | - | Sterile (autoclaved) | |
Serological pipettes | - | 2 mL, 5 mL, 10 mL, and 25 mL low endotoxin, sterile | |
Pipette | P20, P200, P1000 and standard multichannel | ||
Pipette tips | P20, P200, and P1000. | ||
Conical tubes (Protein LoBind® Tubes) | Eppendorf | 0030122216; 0030122240 | 15 mL, 50 mL tubes |
Eppendorf Tubes® lo-bind | Eppendorf | 022431081 | 1.5 mL tubes |
96 wells black walled plate | - | - | for epithelial permeability analysis |
Microscope (with camera) | - | - | For bright-field imaging |
Water bath (or beads) | - | - | Set to 37°C |
Vacuum set-up | - | - | Minimum pressure: -70 kPa |
Cell scrapers | Biotium | 220033 | |
T75 flasks | BD Falcon | 353136 | Cell culture flask |
Emulate Reagent-1 (ER-1) | Emulate Inc. | - | Chip coating solution |
Emulate Reagent-2 (ER-2) | Emulate Inc. | - | Chip coating solution |
Dulbecco’s PBS (DPBS) | Corning | 21-031-CV | 1X |
Cell Culture Grade Water | Corning | MT25055CV | |
Trypan blue | Sigma | 93595 | For cell counting |
TryplE Express | ThermoFisher Scientific | 12604013 | Organoids dissociation and endothelium cells detachment solution |
Advanced DMEM/F12 | ThermoFisher Scientific | 12634028 | Medium |
IntestiCult™ Organoid Growth Medium (Human) | Stem Cell technologies | 06010 | Organoid Growth Medium |
Endothelial Cell Growth Medium MV 2 | Promocell | C-22121 | Endothelial medium |
Fetal bovine serum (FBS) | Sigma | F4135 | Serum |
Primocin™ | InvivoGen | ANT-PM-1 | antimicrobial agent |
Attachment Factor™ | Cell Systems | 4Z0-210 | coating solution for flask |
Matrigel - Growth Factor Reduced | Corning | 356231 | Solubilized basement membrane matrix |
Collagen IV | Sigma | C5533 | ECM component |
Fibronectin | Corning | 356008 | ECM component |
Y-27632 | Stem Cell technologies | 72304 | organoid media supplement |
CHIR99021 | Reprocell | 04-0004-10 | organoid media supplement |
Cell Recovery Solution | Corning | 354253 | Basement mebrane matrix dissociationsolution |
Bovine Serum Albumin (BSA) | Sigma | A9576 | 30%, Sterile |
Cell Culture Grade Water | Corning | MT25055CV | Sterile, Water |
DMSO | Sigma | D2650 | solvent |
3KDa Dextran Cascade Blue | Invitrogen | D7132 | 10 mg powder |
Rifampicin (RIF) | Sigma | Cat# R3501 | CYP inducer |
Testosterone hydrate | Sigma | T1500 | CYP substrate |
1,25-dihyroxy Vitamin D3 (VD3) | Sigma | Cat# D1530 | CYP inducer |
Acetonitrile with 0.1% (v/v) Formic acid | Sigma | 159002 | LCMS stop solution |
IFNγ | Peprotech | 300-02 | |
4% Paraformaldehyde (PFA) | EMS | 157-4 | Fixative |
Triton-X 100 | Sigma | T8787 | |
Normal Donkey Serum (NDS) | Sigma | 566460 | |
anti-Occludin | ThermoFisher Scientific | 33-1500 | tight junctions marker |
anti-Claudin 4 | ThermoFisher Scientific | 36-4800 | tight junctions marker |
anti-E-cadherin | Abcam | ab1416 | epithelial adherens junctions marker |
anti-VE-cadherin | Abcam | ab33168 | endothelial adherent junctions marker |
anti- Zonula Occludens 1 (ZO-1) | Thermo Fischer | 339194 | tight junctions marker |
DAPI | ThermoFisher Scientific | 62248 | nuclear stain |
2-mercaptoethanol | Sigma | M6250 | |
PureLink RNA Mini Kit | Invitrogen | 12183020 | RNA lysis, isolation and purification kit |
SuperScript™ IV VILO™ Master Mix | Invitrogen | 11756050 | reverse transcriptase kit |
TaqMan™ Fast Advanced Master Mix | Applied Biosystems | 4444557 | qPCR reagent |
QuantStudio™ 5 Real-Time PCR System | Applied Biosystems | A28573 | Real-time PCR cycler |
18S primer | ThermoFisher Scientific | Hs99999901_s1 | Eukaryotic 18S rRNA |
CYP3A4 primer | ThermoFisher Scientific | Hs00604506_m1 | Cytochrome family 3 subfamily A member 4 |
Pierce™ Coomassie Plus (Bradford) Assay Kit | ThermoFisher Scientific | 23236 | Protein quantification kit |
MSD Tris lysis buffer | Meso Scale Diagnostics | R60TX-3 | Protein lysis buffer |
Cleaved/Total Caspase-3 Whole Cell Lysate Kit | Meso Scale Diagnostics | K15140D | Caspase 3 detection kit |
V-PLEX Vascular Injury Panel 2 Human Kit | Meso Scale Diagnostics | K15198D | |
V-PLEX Human Proinflammatory Panel II (4-Plex) | Meso Scale Diagnostics | K15053D | |
Zeiss LSM 880 | Zeiss | - | Confocal microscope |
Zeiss LD plan-Neofluar 20x/0.40 Korr M27 | Zeiss | - | 20X long-distance objective lenses |
Zeiss AXIOvert.A1 | Zeiss | - | Brightfield microscope |
Zeiss LD A-Plan 10X/0.25 Ph1 | Zeiss | - | 10X objective lenses |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoExplorar más artículos
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados