Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Biopsy-derived intestinal organoids and organ-on-a-chips technologies are combined into a microphysiological platform to recapitulate region-specific intestinal functionality.

Abstract

The intestinal mucosa is a complex physical and biochemical barrier that fulfills a myriad of important functions. It enables the transport, absorption, and metabolism of nutrients and xenobiotics while facilitating a symbiotic relationship with microbiota and restricting the invasion of microorganisms. Functional interaction between various cell types and their physical and biochemical environment is vital to establish and maintain intestinal tissue homeostasis. Modeling these complex interactions and integrated intestinal physiology in vitro is a formidable goal with the potential to transform the way new therapeutic targets and drug candidates are discovered and developed.

Organoids and Organ-on-a-Chip technologies have recently been combined to generate human-relevant intestine chips suitable for studying the functional aspects of intestinal physiology and pathophysiology in vitro. Organoids derived from the biopsies of the small (duodenum) and large intestine are seeded into the top compartment of an organ chip and then successfully expand as monolayers while preserving the distinct cellular, molecular, and functional features of each intestinal region. Human intestine tissue-specific microvascular endothelial cells are incorporated in the bottom compartment of the organ chip to recreate the epithelial-endothelial interface. This novel platform facilitates luminal exposure to nutrients, drugs, and microorganisms, enabling studies of intestinal transport, permeability, and host-microbe interactions.

Here, a detailed protocol is provided for the establishment of intestine chips representing the human duodenum (duodenum chip) and colon (colon chip), and their subsequent culture under continuous flow and peristalsis-like deformations. We demonstrate methods for assessing drug metabolism and CYP3A4 induction in duodenum chip using prototypical inducers and substrates. Lastly, we provide a step-by-step procedure for the in vitro modeling of interferon gamma (IFNγ)-mediated barrier disruption (leaky gut syndrome) in a colon chip, including methods for evaluating the alteration of paracellular permeability, changes in cytokine secretion, and transcriptomic profiling of the cells within the chip.

Introduction

The human intestine is a complex and multitasking organ capable of self-regeneration. It is divided into the small and large intestine. The primary function of the small intestine is to further digest food coming from the stomach, absorb all the nutrients, and pass the residue on to the large intestine, which recovers the water and electrolytes. The small intestine is further divided into multiple anatomically distinct regions: the duodenum, jejunum, and ileum, each of which is adapted to perform specific functions. For example, the duodenum helps break down of the chyme (stomach contents) to enable the proper absorption of nutrients involving proteins, carbohydr....

Protocol

NOTE: All cell cultures should be handled using a proper aseptic technique.

The human intestinal organoids employed in this study were obtained from Johns Hopkins University and all methods were carried out in accordance with approved guidelines and regulations. All experimental protocols were approved by the Johns Hopkins University Institutional Review Board (IRB #NA 00038329).

1. Preparation of the cell culture reagents

  1. Prepare the hu.......

Representative Results

Figure 1D summarizes the timeline of the intestine chip culture and illustrates the intestinal endothelial cells and organoids before and upon seeding on the chip. Moreover, it demonstrates the distinct morphological differences between the duodenum and colon chips, highlighted by the presence of the villi-like formations in the duodenum chip and representative of the small intestinal architecture.

Figure 3A,B demonst.......

Discussion

The combination of organ-on-a-chip technology and intestinal organoids holds promise for accurate modeling of human intestinal physiology and pathophysiology. Here, we provide a simple and robust step-by-step protocol (outlined in Figure 1) for establishment of the intestine chip containing biopsy-derived small intestinal or colonic epithelium and intestinal microvascular endothelial cells co-cultured in a microfluidic device. This chip-based simulation of the human intestine incorporates ph.......

Acknowledgements

We thank Professor Mark Donowitz for providing the intestinal biopsy-derived organoids and Brett Clair for designing the scientific illustrations of the chip, portable and culture module. All the rest of the scientific illustrations were generated using the BioRender.

....

Materials

NameCompanyCatalog NumberComments
small intestine Human Intestinal Microvascular Endothelial CellsAlphaBioRegenALHE150.5 cells M/ml ; cryopreserved
colon Human Intestinal Microvascular Endothelial CellsAlphaBioRegenALHE160.5 cells M/ml ; cryopreserved
Biopsy-derived Human Duodenal OrganoidsJohn Hopkin's University-The organoids were provided by Professor Mark Donowitz (Institutional Review Board Number: NA_00038329).
Biopsy-derived Human Colonic OrganoidsJohn Hopkin's University-The organoids were provided by Professor Mark Donowitz (Institutional Review Board Number: NA_00038329).
Zoë CM-1™ Culture ModuleEmulate Inc.-Culture module
Orb-HM1™ Hub ModuleEmulate Inc.-5% CO2, vacuum stretch, and power supply
Chip-S1™ Stretchable ChipEmulate Inc.-Organ-Chip
Pod™ Portable ModulesEmulate Inc.-Portable module
UV Light BoxEmulate Inc.--
Chip CradleEmulate Inc.-1 per square culture dish
Steriflip®-HV FiltersEMD MilliporeSE1M003M000.45 μm PVDF filter
Square Cell Culture Dish (120 x 120 mm)VWR82051-068-
Handheld vacuum aspiratorCorning4930 -
Aspirating pipettesCorning / Falcon3575582 mL, polystyrene, individually wrapped
Aspirating tips -Sterile (autoclaved)
Serological pipettes -2 mL, 5 mL, 10 mL, and 25 mL low endotoxin, sterile
PipetteP20, P200, P1000 and standard multichannel
Pipette tips P20, P200, and P1000.
Conical tubes (Protein LoBind® Tubes)Eppendorf0030122216; 003012224015 mL, 50 mL tubes
Eppendorf Tubes® lo-bindEppendorf0224310811.5 mL tubes
96 wells black walled plate--for epithelial permeability analysis
Microscope (with camera)--For bright-field imaging
Water bath (or beads)--Set to 37°C
Vacuum set-up --Minimum pressure: -70 kPa
Cell scrapersBiotium220033
T75 flasksBD Falcon353136Cell culture flask
Emulate Reagent-1 (ER-1)Emulate Inc.-Chip coating solution
Emulate Reagent-2 (ER-2)Emulate Inc.-Chip coating solution
Dulbecco’s PBS (DPBS)Corning21-031-CV1X
Cell Culture Grade WaterCorningMT25055CV
Trypan blueSigma93595For cell counting
TryplE ExpressThermoFisher Scientific12604013Organoids dissociation and endothelium cells detachment solution
Advanced DMEM/F12ThermoFisher Scientific12634028Medium
IntestiCult™ Organoid Growth Medium (Human)Stem Cell technologies06010Organoid Growth Medium
Endothelial Cell Growth Medium MV 2PromocellC-22121Endothelial medium
Fetal bovine serum (FBS)SigmaF4135Serum
Primocin™ InvivoGenANT-PM-1antimicrobial agent
Attachment Factor™Cell Systems4Z0-210coating solution for flask
Matrigel - Growth Factor ReducedCorning356231Solubilized basement membrane matrix
Collagen IVSigmaC5533ECM component
FibronectinCorning356008ECM component
Y-27632Stem Cell technologies72304organoid media supplement
CHIR99021Reprocell04-0004-10organoid media supplement
Cell Recovery SolutionCorning354253Basement mebrane matrix dissociationsolution
Bovine Serum Albumin (BSA)SigmaA957630%, Sterile
Cell Culture Grade WaterCorningMT25055CVSterile, Water
DMSOSigmaD2650solvent
3KDa Dextran Cascade BlueInvitrogenD713210 mg powder
Rifampicin (RIF)SigmaCat# R3501CYP inducer
Testosterone hydrateSigmaT1500CYP substrate
1,25-dihyroxy Vitamin D3 (VD3)SigmaCat# D1530CYP inducer
Acetonitrile with 0.1% (v/v) Formic acidSigma159002LCMS stop solution
IFNγPeprotech300-02
4% Paraformaldehyde (PFA)EMS157-4Fixative
Triton-X 100SigmaT8787
Normal Donkey Serum (NDS)Sigma566460
anti-OccludinThermoFisher Scientific33-1500tight junctions marker
anti-Claudin 4ThermoFisher Scientific36-4800tight junctions marker
anti-E-cadherinAbcamab1416epithelial adherens junctions marker
anti-VE-cadherinAbcamab33168endothelial adherent junctions marker
anti- Zonula Occludens 1 (ZO-1)Thermo Fischer339194tight junctions marker
DAPIThermoFisher Scientific62248nuclear stain
2-mercaptoethanolSigmaM6250
PureLink RNA Mini KitInvitrogen12183020RNA lysis, isolation and purification kit
SuperScript™ IV VILO™ Master MixInvitrogen11756050reverse transcriptase kit
TaqMan™ Fast Advanced Master MixApplied Biosystems4444557qPCR reagent
QuantStudio™ 5 Real-Time PCR SystemApplied BiosystemsA28573Real-time PCR cycler
18S primerThermoFisher ScientificHs99999901_s1Eukaryotic 18S rRNA
CYP3A4 primerThermoFisher ScientificHs00604506_m1Cytochrome  family 3 subfamily A member 4
Pierce™ Coomassie Plus (Bradford) Assay KitThermoFisher Scientific23236Protein quantification kit
MSD Tris lysis bufferMeso Scale DiagnosticsR60TX-3Protein lysis buffer
Cleaved/Total Caspase-3 Whole Cell Lysate KitMeso Scale DiagnosticsK15140DCaspase 3 detection kit
V-PLEX Vascular Injury Panel 2 Human KitMeso Scale DiagnosticsK15198D
V-PLEX Human Proinflammatory Panel II (4-Plex)Meso Scale DiagnosticsK15053D
Zeiss LSM 880Zeiss-Confocal microscope
Zeiss LD plan-Neofluar 20x/0.40 Korr M27Zeiss-20X long-distance objective lenses
Zeiss AXIOvert.A1Zeiss-Brightfield microscope
Zeiss LD A-Plan 10X/0.25 Ph1Zeiss-10X objective lenses

References

Explore More Articles

Human OrganoidsOrgan on a chipIntestinal Region specific FunctionalityIntestinal EpitheliumPharmacokineticsDrug drug InteractionIntestinal Epithelial Barrier DysfunctionIntestinal PhysiologyPharmacodynamicsSeedingOrganoid FragmentsBMM DissociationOrganoid DigestionAdvanced DMEM F12Organoid Growth MediumCoated Chips

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved