Iniciar sesión

Spectrophotometric Determination of an Equilibrium Constant

Visión general

Source: Laboratory of Dr. Michael Evans — Georgia Institute of Technology

The equilibrium constant, K, for a chemical system is the ratio of product concentrations to reactant concentrations at equilibrium, each raised to the power of their respective stoichiometric coefficients. Measurement of K involves determination of these concentrations for systems in chemical equilibrium.

Reaction systems containing a single colored component can be studied spectrophotometrically. The relation between absorbance and concentration for the colored component is measured and used to determine its concentration in the reaction system of interest. Concentrations of the colorless components can be calculated indirectly using the balanced chemical equation and the measured concentration of the colored component.

In this video, the Beer's law curve for Fe(SCN)2+ is determined empirically and applied to the measurement of K for the following reaction:

Equation 1

Four reaction systems with different initial concentrations of reactants are investigated to illustrate that K remains constant irrespective of initial concentrations.

Procedimiento

1. Determining the Beer's Law Curve for Fe(SCN)2+

  1. Calibrate a visible spectrophotometer using distilled water as a blank.
  2. Add 1.0 mL of 1.0 × 10-4 M Fe(NO3)3 solution to a test tube.
  3. To the same test tube, add 5.0 mL of 0.50 M KSCN solution.
  4. To the same test tube, add 4.0 mL of 0.10 M HNO3 solution. Cover the tube with a gloved finger and gently shake to mix.
  5. Use a Pasteur pipette to transfer a small quanti

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Resultados

Table 4 lists the absorbance and concentration data for solutions 1 – 5. Concentrations of Fe(SCN)2+ were determined from initial concentrations of Fe3+ under the assumption that all of the Fe3+ is converted to Fe(SCN)2+. A large excess of SCN- was used in tubes 1 – 5 to ensure that this assumption holds true.

The molarity [Fe(SCN)2+]

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Aplicación y resumen

The equilibrium constant provides useful information about the extent to which a reaction will proceed to form products over time. Reactions with a large value of K, much larger than 1, will form products nearly complete given enough time (Figure 3). Reactions with a value of K less than 1 will not proceed forward to a significant degree. The equilibrium constant thus serves as a measure of the feasibility of a chemical reaction.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
Equilibrium ConstantChemical ReactionConcentrationSpectrophotometric DeterminationEquilibriumProductsReactantsSpectrophotometerIron Thiocyanate ReactionForward And Reverse ReactionsSteady StateStoichiometric CoefficientsBeer Lambert LawColored Species

Saltar a...

0:00

Overview

1:02

Principles of the Equilibrium Constant

3:08

Creating a Calibration Curve for Fe(SCN)2+

4:38

Measuring K for the Fe(SCN)2+ System

5:28

Results

6:59

Applications

8:33

Summary

Vídeos de esta colección:

article

Now Playing

Spectrophotometric Determination of an Equilibrium Constant

General Chemistry

154.4K Vistas

article

Common Lab Glassware and Uses

General Chemistry

634.2K Vistas

article

Solutions and Concentrations

General Chemistry

265.7K Vistas

article

Determining the Density of a Solid and Liquid

General Chemistry

538.3K Vistas

article

Determining the Mass Percent Composition in an Aqueous Solution

General Chemistry

381.2K Vistas

article

Determining the Empirical Formula

General Chemistry

173.6K Vistas

article

Determining the Solubility Rules of Ionic Compounds

General Chemistry

138.4K Vistas

article

Using a pH Meter

General Chemistry

336.2K Vistas

article

Introduction to Titration

General Chemistry

408.4K Vistas

article

Ideal Gas Law

General Chemistry

76.2K Vistas

article

Le Châtelier's Principle

General Chemistry

255.8K Vistas

article

Freezing-Point Depression to Determine an Unknown Compound

General Chemistry

157.9K Vistas

article

Determining Rate Laws and the Order of Reaction

General Chemistry

193.4K Vistas

article

Using Differential Scanning Calorimetry to Measure Changes in Enthalpy

General Chemistry

43.8K Vistas

article

Coordination Chemistry Complexes

General Chemistry

89.7K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados