Iniciar sesión

Demonstration of the Power Law Model Through Extrusion

Visión general

Source: Kerry M. Dooley and Michael G. Benton, Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA

Polymer melts are often formed into simple shapes or "extrudates", such as cylindrical pellets, flat sheets, or pipe, using an extruder.1 Polyolefins are among the most common extrudable polymers. Extrusion involves transporting and melting solid feed, which is sometimes mixed with non-polymeric materials, and the pressure build-up and transport of the melt or mixture. It is applied to thermoplastic polymers, which deform when heated and resume their earlier "no-flow" properties when cooled.

Using a simple lab extruder, the effect of operating conditions on polymer output and pressure drop can be examined and the resulting data can be correlated using the "Power Law" model for flow of polymer melts and solutions. This model is used to scale up the process to more complex extruders. The relationship between operating conditions and the deviations from theoretical displacement behavior ("slippage") and extrudate shape ("die swell") can be determined.

In this experiment, a typical thermoplastic polymer, such as a high-density polyethylene (HDPE) copolymer (of ethylene + a longer chain olefin) will be used. The operating temperature for the die and zones depend on the material. The flow rate can be determined by weighing the die output at timed intervals. All other necessary data (screw speed, zone temperatures, pressure entering the die) can be read from the instrument panel.

Procedimiento

For this experiment, a typical thermoplastic copolymer (ExxonMobil Paxon BA50, melt temperature ~204 °C) of high-density polyethylene (HDPE) plus a longer chain olefin will be extruded through a cylindrical die.

1. Initialize the Extruder

  1. Turn the exhaust "ON" when you are ready to power up the extruder.
  2. Fill the hopper and extruder with polymer pellets.
  3. Make sure that the motor switch is "OFF". Then turn the main switch "ON".

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Resultados

The Q vs. ΔP relationship was calculated using the Power Law model, and ir takes on a simple form for flow in a conduit of simple geometry, which in this case is the die. From the flow, speed, and temperature measurements, the Power Law constants and other quantities, such as shear rate, shear stress, and degree of slippage were calculated. Representative data and a fit to Equation 2 by linear regression are shown in Figure 2. The data s

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Aplicación y resumen

Polymer extrusion begins by melting polymer resins that enter the extruder through the hopper. The flow of the molten polymer depends on the viscosity (ratio of shear stress to shear rate) behavior of the substance. The polymer leaves through the die, and is shaped to desired dimensions. The flow of polymer is expected to follow the Power Law model.

In this experiment, the mechanics of the Power Law model, including how it is used in conjunction with the z-direction equation of motion to analy

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Referencias
  1. Principles of Polymer Processing, Z. Tadmor and C.G. Gogos, Wiley Intersicence, Hoboken, 2006 (Ch. 3, 4, 6, 9-10); Analyzing and Troubleshooting Single Screw Extruders, G. Campbell and M.A. Spalding, Carl Hanser, Munich, 2013 (Ch. 1, 3, A3).
  2. Transport Phenomena by R.B. Bird, W.E. Stewart, and E.N. Lightfoot, John Wiley, New York, 1960 (Ch. 2-3) and Process Fluid Mechanics by M.M. Denn, Prentice-Hall, Englewood Cliffs, 1980 (Ch. 2, 8, 19)
Tags
ExtrusionPower Law ModelIndustrial ProcessPolymersTubingPipesCar PartsToysSmall Scale StudyPolyolefinsPolyethyleneCopolymersThermal Plastic MaterialSolid FeedMoldDieNon pliable PropertiesLab ExtrudersPower Law Model ParametersOperating ConditionsTheoretical BehaviorExtrudate ShapeHopperBarrelResistive Heating ElementsTemperature ZonesHelical ScrewMixing And Melting

Saltar a...

0:07

Overview

1:19

Principles of Extrusion

2:59

Extruder Start-up and Heat-soak

4:21

Extruder Operation and Data Collection

5:43

Extruder Shut Down and Data Processing

6:48

Results

7:53

Applications

9:41

Summary

Vídeos de esta colección:

article

Now Playing

Demonstration of the Power Law Model Through Extrusion

Chemical Engineering

9.9K Vistas

article

Testing the Heat Transfer Efficiency of a Finned-tube Heat Exchanger

Chemical Engineering

17.6K Vistas

article

Using a Tray Dryer to Investigate Convective and Conductive Heat Transfer

Chemical Engineering

43.5K Vistas

article

Viscosity of Propylene Glycol Solutions

Chemical Engineering

31.7K Vistas

article

Porosimetry of a Silica Alumina Powder

Chemical Engineering

9.5K Vistas

article

Gas Absorber

Chemical Engineering

36.2K Vistas

article

Vapor-liquid Equilibrium

Chemical Engineering

84.9K Vistas

article

The Effect of Reflux Ratio on Tray Distillation Efficiency

Chemical Engineering

76.4K Vistas

article

Efficiency of Liquid-liquid Extraction

Chemical Engineering

47.8K Vistas

article

Liquid Phase Reactor: Sucrose Inversion

Chemical Engineering

9.5K Vistas

article

Crystallization of Salicylic Acid via Chemical Modification

Chemical Engineering

23.8K Vistas

article

Single and Two-phase Flow in a Packed Bed Reactor

Chemical Engineering

18.7K Vistas

article

Kinetics of Addition Polymerization to Polydimethylsiloxane

Chemical Engineering

15.8K Vistas

article

Catalytic Reactor: Hydrogenation of Ethylene

Chemical Engineering

29.6K Vistas

article

Evaluating the Heat Transfer of a Spin-and-Chill

Chemical Engineering

7.2K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados