Iniciar sesión

Anemometría de temperatura constante:Uuna herramienta para estudiar el flujo de capa de límite turbulenta

Visión general

Fuente: José Roberto Moreto, Jaime Dorado, y Xiaofeng Liu, Departamento de Ingeniería Aeroespacial, Universidad Estatal de San Diego, San Diego, California

Una capa de contorno es una región de flujo fino inmediatamente adyacente a la superficie de un sólido sumergido en el campo de flujo. En esta región, los efectos viscosos, como la tensión de cizallamiento viscoso, dominan, y el flujo se retrasa debido a la influencia de la fricción entre el fluido y la superficie sólida. Fuera de la capa límite, el flujo es inviscid, es decir, no hay efectos disipadores debido a la fricción, la conducción térmica o la difusión de masa.

El concepto de capa límite fue introducido por Ludwig Prandtl en 1904, lo que permite una simplificación significativa a la ecuación Navier-Stokes (NS) para el tratamiento del flujo sobre un cuerpo sólido. Dentro de la capa de límite, la ecuación NS se reduce a la ecuación de capa de límite, mientras que fuera de la capa de límite, el flujo se puede describir mediante la ecuación Euler, que es una versión simplificada de la ecuación NS.

Figura 1. Desarrollo de capas de límite sobre una placa plana.

El caso más simple para el desarrollo de la capa límite se produce en una placa plana en ángulo cero de incidencia. Al considerar el desarrollo de la capa límite en una placa plana, la velocidad fuera de la capa límite es constante para que el gradiente de presión a lo largo del muro se considere cero.

La capa límite, que se desarrolla naturalmente en una superficie de cuerpo sólido, normalmente sufre las siguientes etapas: en primer lugar, el estado de la capa límite laminar; en segundo lugar, el estado de transición y, en tercer lugar, el estado de capa límite turbulento. Cada estado tiene su propia(s) ley(es) que describe la estructura de flujo de la capa límite.

La investigación sobre el desarrollo y la estructura de la capa límite es de gran importancia tanto para el estudio teórico como para las aplicaciones prácticas. Por ejemplo, la teoría de capas de contorno es la base para calcular la resistencia a la fricción de la piel en barcos, aeronaves y las cuchillas de las turbomáquinas. La resistencia a la fricción de la piel se crea en la superficie del cuerpo dentro de la capa límite y se debe a la tensión de cizallamiento viscoso ejercida sobre la superficie a través de partículas de fluido en contacto directo con ella. La fricción de la piel es proporcional a la viscosidad del fluido y al gradiente de velocidad local en la superficie en la dirección normal de la superficie. La resistencia a la piel está presente en toda la superficie, por lo que se vuelve significativa en grandes áreas, como un ala de avión. Además, el flujo de fluido turbulento crea más resistencia a la fricción de la piel. El movimiento del fluido macroturbulento mejora la transferencia de impulso dentro de la capa límite al llevar partículas de fluido con alto impulso a la superficie.

Esta demostración se centra en la capa límite turbulenta sobre una placa plana, en la que el flujo es irregular, como en la mezcla o el reflujo, y las fluctuaciones se superponen en el flujo medio. Por lo tanto, la velocidad en cualquier punto de una capa límite turbulenta es una función del tiempo. En esta demostración, se utilizará una emnemometría de cable caliente de temperatura constante, o CTA, para llevar a cabo una encuesta de capa límite. A continuación, se utilizará el método de gráfico Clauser para calcular el coeficiente de fricción de la piel en una capa límite turbulenta.

Procedimiento

1. Determinación de la respuesta dinámica del sistema de cable caliente

El propósito de este procedimiento es entender la rapidez con la que el sistema de anemómetro puede responder a los cambios de la señal de flujo. Esta capacidad se mide midiendo la respuesta de frecuencia cuando la señal se enciende y apaga aplicando una onda cuadrada.

  1. Asegure la sonda de cable caliente del sistema CTA dentro de un túnel de viento utilizando un eje de soporte.
  2. Configure

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Resultados

La CTA se calibra en la Sección 2 del protocolo midiendo el voltaje del cable caliente a diferentes velocidades de aire. Estos datos se utilizaron entonces para determinar la relación matemática entre la variable medida, la tensión y la variable indirecta, la velocidad del aire. Hay muchos enfoques para ajustar los datos experimentales a las relaciones matemáticas para la velocidad, varios de los cuales se tratan en el apéndice. Una vez determinada la relación matemática, la veloc...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Aplicación y resumen

La demostración muestra cómo utilizar la anemometría de temperatura constante, una poderosa herramienta utilizada para estudiar el flujo turbulento sobre una superficie, que en este caso específico era una placa plana. Este método es más simple y menos costoso que otros métodos, como PIV, PTV y LDV, y proporciona una alta resolución temporal. La aplicación de anemometría de cable caliente a una capa límite turbulenta proporciona un enfoque rentable y práctico para demostrar el comportamiento de los flujos tur...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
Valor vac oEmisi n

Saltar a...

0:01

Concepts

3:05

CTA Dynamic Response Determination

4:44

CTA Calibration

6:07

Boundary Layer Survey

7:23

Results

Vídeos de esta colección:

article

Now Playing

Anemometría de temperatura constante:Uuna herramienta para estudiar el flujo de capa de límite turbulenta

Aeronautical Engineering

7.1K Vistas

article

Rendimiento aerodinámico en un modelo de avión: El DC-6B

Aeronautical Engineering

8.0K Vistas

article

Caracterización de la hélice: Variaciones en el paso, el diámetro y el número de palas en el rendimiento

Aeronautical Engineering

25.8K Vistas

article

Comportamiento de la superficie aerodinámica: Distribución de la presión en un ala Clark Y-14

Aeronautical Engineering

20.5K Vistas

article

Rendimiento del ala Clark Y-14: Despliegue de dispositivos de elevación alta (Flaps y Slats)

Aeronautical Engineering

13.0K Vistas

article

Método esfera de turbulencia: Evaluación de la calidad del flujo del túnel de viento

Aeronautical Engineering

8.5K Vistas

article

Flujo cilíndrico transversal: medición de la distribución de la presión y estimación de los coeficientes de arrastre

Aeronautical Engineering

15.8K Vistas

article

Análisis de boquillas: variaciones en el número de Mach y la presión a lo largo de una boquilla convergente y una convergente-divergente

Aeronautical Engineering

37.5K Vistas

article

Fotografías de Schlieren: Una técnica para visualizar las características del flujo supersónico

Aeronautical Engineering

10.6K Vistas

article

Visualización del flujo en un túnel de agua: Observación del vórtice en el borde de ataque sobre un ala Delta

Aeronautical Engineering

7.6K Vistas

article

Visualización del flujo de tinte superficial: Un método cualitativo para observar los patrones de las líneas del tramo en un flujo supersónico

Aeronautical Engineering

4.8K Vistas

article

Tubo Pitot-estático: Un dispositivo para medir la velocidad del flujo de aire

Aeronautical Engineering

47.9K Vistas

article

Transductor de presión: Calibración mediante un tubo de Pitot estático

Aeronautical Engineering

8.4K Vistas

article

Control de vuelo en tiempo real: calibración de sensores integrados y adquisición de datos

Aeronautical Engineering

9.9K Vistas

article

Aerodinámica de multicópteros: Caracterización del empuje en un hexacóptero

Aeronautical Engineering

9.0K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados