Source: Sina Shahbazmohamadi and Peiman Shahbeigi-Roodposhti-Roodposhti, School of Engineering, University of Connecticut, Storrs, CT
Bones are composites, made of a ceramic matrix and polymer fiber reinforcements. The ceramic contributes compressive strength, and the polymer provides tensile and flexural strength. By combining ceramic and polymer materials in different amounts, the body can create unique materials tailored for a specific application. As biomedical engineers, having the ability to replace and replicate bone due to disease or traumatic injury is a vital facet of medical science.
In this experiment we will create three different ceramic-matrix composites with plaster of Paris (which is a calcium sulfate compound), and allow them to undergo three-point bending test in order to determine which preparation is the strongest. The three composites are as follows: one comprised only of plaster of Paris, one with chopped glass shards mixed in a plaster matrix and lastly a plaster matrix with a fiberglass network embedded within it.
1. Making one plain plaster sample
The overall objective of the series of aforementioned tests is to compare the different physical characteristics between various composite bone substitutes. Flexural strength and strain needs to be calculated using Equations 4 and 5, respectively. The stress and strain for each sample will be plotted in MATLAB. From this, the maximum flexural strength and the corresponding flexural strain can be found for each data set. The stress (σf1, Log in or to access full content. Learn more about your institution’s access to JoVE content here
This experiment was designed to study flexural strength on three different kind of composite material. We fabricated three specimens with different reinforcement materials. The matrix was plaster of Paris (a calcium sulfate compound), and we used chopped glass fibers and fiberglass tape as reinforcements. We performed 3-point bending test on the fabricated specimens, and analyzed the achieved data, comparing the properties of composites made with long, oriented fibers vs. short random fibers.
Log in or to access full content. Learn more about your institution’s access to JoVE content here
Saltar a...
Vídeos de esta colección:
Now Playing
Materials Engineering
7.9K Vistas
Materials Engineering
13.0K Vistas
Materials Engineering
8.6K Vistas
Materials Engineering
21.0K Vistas
Materials Engineering
85.5K Vistas
Materials Engineering
8.7K Vistas
Materials Engineering
6.4K Vistas
Materials Engineering
35.5K Vistas
Materials Engineering
13.0K Vistas
Materials Engineering
19.4K Vistas
Materials Engineering
15.3K Vistas
Materials Engineering
22.7K Vistas
Materials Engineering
5.0K Vistas
Materials Engineering
23.0K Vistas
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados