Sign In

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Somethingt

Mix Data

Somethingt

Somethingt

Somethingt

Somethingt

Somethingt

Abstract

Something

Something

Something

Something

Something

Something

Something

Something

Something

Something

Introduction

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

Protocol

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

Representative Results

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

test

Discussion

test

test

test

Disclosures

test

Authors Contribution

test

test

test

test

test

test

Acknowledgements

test

test

test

test

test

test

Materials

NameCompanyCatalog NumberComments
(3-Glycidyloxypropyl)trimethoxysilaneSigma440167GOPS
0.25% Trypsin-EDTA (1X)Gibco25200-056
4-Dodecylbenzenesulfonic acidSigma44198DBSA
96-well plateFalcon353075
AcetoneTechnic530
Acrylic resinFischer scientificNC1455685
agaroseSigmaA9539
autoclaveTuttnauer3150 EL
AZ 10XTMicrochemicalsPositive photoresist
AZ 826 MIF DeveloperMerck10056124960Metal-ion-free developer for the negative photoresist
AZ DeveloperMerck10054224960Metal-ion-free developer for the positive photoresist
AZ nLof 2070MicrochemicalsNegative photoresist
BuprenorphineAxience
CarprofenRimadyl
Centrifuge Sorvall Legend X1RThermo Scientific75004260
CMOS camera Prime 95BPhotometrics
CO2 incubator HERAcell 150iThermo scientific
DAC boardNational InstrumentsUSB 6259
Déco spray PébéoCultura3167860937307Black acrylic paint
Dextran Texas Red 70.000ThermofisherD1830
Die bonding paste "Epinal"HitachiEN-4900GCSilver paste
Dimethyl sulfoxideSigmaD2438
Dispensing machineTianhaoTH-2004C
Dulbecco’s Modified Eagle’s Medium + GlutaMAX™-IGibco10567-014
Dulbecco's Modified Eagle's MediumSigmaD6429
Egg incubator COUVAD'OR 160lafermedemanon.com
Ethylene glycolCarl Roth6881.1
Fertilized eggs of Japanese quailJapocaille
Fetal Bovine SerumVWRS181BH
FlaskGreiner658170
Fluorescence macroscopeLeica MZFLIII
Gl261DSMZACC 802
Gold pellets - Dia 3 mm x 6 mm thNeyco
Handheld automated cell counterMilliporePHCC00000
Heating and drying ovenMemmertUF110
Hexadimethrine Bromide Sequa-breneSigmaS2667
hot plate Delta 6 HP 350Süss Microtec
Illumination system pE-4000CoolLed
Infrared tunable femtosecond laser (Maï-Taï)Spectra Physics (USA)
Ionomycin calcium saltSigmaI3909
Kapton tape SCOTCH 92 33x193MPolyimide protection tape
Lab made pulse generator
Labcoter 2 Parylene Deposition system PDS 2010SCS
Lenti-X 293 T cell lineTakara Bio63218HEK 293T-derived cell line optimized for lentivirus production
Lenti-X GoStix PlusTakara Bio631280Quantitative lentiviral titer test
Mask aligner MJB4Süss Microtec
Micro-90 Concentrated cleaning solutionInternational ProductsM9050-12
Microscope slides 76 x 52 x 1 mmMarienfeld1100420
Needles 30GBD Microlance 3304000
PalmSens4 potentiostatPalmSens
parylene-c : dichloro-p-cyclophaneSCS300073
PCB Processing TanksMega ElectronicsPA104
PEDOT:PSS Clevios PH 1000Heraeus
penicillin / streptomycinGibco15140-122
Petri dishFalcon351029
pGP-CMV-GCaMP6fAddgene40755plasmid
Phosphate Buffer Saline solutionThermofisherD8537
Plasma treatment system PE-100Plasma Etch
PlasmaLab 80 Reactive Ion EtcherOxford Instruments
Plastic maskSelba
Plastic weigh boat 64 x 51 x 19 mmVWR10770-454
Poly-dimethylsiloxane: SYLGARD 184 Silicone Elastomer KitDow chemicals1673921
Polyimide copper film 60 µm (Kapton)GoodfellowIM301522
Propan-2-olTechnic574
Protolaser SLPKF
puromycinGibcoA11103
Round cover glass 5 mm diameterFischer scientific50-949-439
Scepter Sensors - 60 µmMilliporePHCC60050
Silicone adhesive Kwik-SilWorld Precision Instruments
spin coaterSüss Microtec
Spin CoaterLaurellWS-650
Super glueOffice depot
tetracycline-free fœtal bovine SerumTakara Bio631105
Thermal evaporator Auto 500Boc Edwards
Two-photon microscopeZeiss LSM 7MP
U87-MGATCCHTB-14Human glioblastoma cells
Ultrasonic cleanerVWR
Vortex VTX-3000LLMSVTX100323410
Xfect single shots reagentTakara Bio631447Transfection reagent

References

  1. Mukund, K., Subramaniam, S. Skeletal muscle: A review of molecular structure and function. in health and disease. Wiley Interdiscip Rev Syst Biol Med. 12 (1), 1462 (2020).
  2. Feige, P., Brun, C. E., Ritso, M., Rudnicki, M. A. Orienting muscle stem cells for regeneration in homeostasis, aging, and disease. Cell Stem Cell. 23 (5), 653-664 (2018).
  3. Mauro, A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 9 (2), 493-495 (1961).
  4. Seale, P., et al. Pax7 is required for the specification of myogenic satellite cells. Cell. 102 (6), 777-786 (2000).
  5. Fuchs, E., Blau, H. M. Tissue stem cells: Architects of their niches. Cell Stem Cell. 27 (4), 532-556 (2020).
  6. Hernández-hernández, J. M., et al. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol. 72, 10-18 (2017).
  7. Zammit, P. S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 72. , 19-32 (2017).
  8. Sabourin, L. A. The molecular regulation of myogenesis. Clin Genet. 1 (1), 16-25 (2000).
  9. Cooper, R. N., et al. In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci. 112 (17), 2895-2901 (1999).
  10. Rudnicki, M. A., Jaenisch, R. The MyoD family of transcription factors and skeletal myogenesis. Bioessays. 17 (3), 203-209 (1995).
  11. Braun, T., Arnold, H. H. Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J. 14 (6), 1176-1186 (1995).
  12. Yablonka-Reuveni, Z. Development and postnatal regulation of adult myoblasts. Microsc Res Tech. 30 (5), 366-380 (1995).
  13. Braun, T., et al. MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development. 120 (11), 3083-3092 (1994).
  14. Rudnicki, M. A., et al. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 75 (7), 1351-1359 (1993).
  15. Montarras, D., et al. Developmental biology: Direct isolation of satellite cells for skeletal muscle regeneration. Science. 309 (5743), 2064-2067 (2005).
  16. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S., Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 456 (7221), 502-506 (2008).
  17. Cerletti, M., et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell. 134 (1), 37-47 (2008).
  18. Liu, L., Cheung, T. H., Charville, G. W., Rando, T. A. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat Protoc. 10 (10), 1612-1624 (2015).
  19. Porpiglia, E., et al. High-resolution myogenic lineage mapping by single-cell mass cytometry. Nat Cell Biol. 19 (5), 558-567 (2017).
  20. Behbehani, G. K., Bendall, S. C., Clutter, M. R., Fantl, W. J., Nolan, G. P. Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry Part A. 81 (7), 552-566 (2012).
  21. Hartmann, F. J., et al. . Mass Cytometry: Methods and Protocols. , (2019).
  22. Devine, R. D., Behbehani, G. K. Use of the pyrimidine analog, 5-iodo-2'-deoxyuridine (IdU) with cell cycle markers to establish cell cycle phases in a mass cytometry platform. J Vis Exp. 176, 60556 (2021).
  23. Bendall, S. C., et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 332 (6030), 687-696 (2011).
  24. Nag, A. C., Foster, J. D. Myogenesis in adult mammalian skeletal muscle in vitro. J Anat. 132 (Pt. 1, 1-18 (1981).
  25. Le Moigne, A., et al. Characterization of myogenesis from adult satellite cells cultured in vitro). Int J Dev Biol. 34, 171-180 (1990).
  26. Yablonka-Reuveni, Z. Development and postnatal regulation of adult myoblasts. Microsc Res Tech. 30 (5), 366-380 (1995).
  27. Chu, C., Cogswell, J., Kohtz, D. S. MyoD functions as a transcriptional repressor in proliferating myoblasts. J Biol Chem. 272 (6), 3145-3148 (1997).
  28. Shah, B., Hyde-Dunn, J., Jones, G. E. Proliferation of murine myoblasts as measured by bromodeoxyuridine incorporation. Methods in Mol Biol. 75, 349-355 (1997).
  29. Springer, M. L., Blau, H. M. High-efficiency retroviral infection of primary myoblasts. Somat Cell Mol Genet. 23 (3), 203-209 (1997).
  30. Rando, T. A., Blau, H. M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol. 125 (6), 1275-1287 (1994).
  31. Springer, M. L., Rando, T. A., Blau, H. M. Gene delivery to muscle. Curr Protoc Hum Genet. Chapter 13, Unit13.4. , (2002).
  32. Cull-Candy, S. G., Fohlman, J., Gustavsson, D., Lullmann-Rauch, R., Thesleff, S. The effects of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. Neuroscience. 1 (3), 175-180 (1976).
  33. Francis, B., John, T. R., Seebart, C., Kaiser, New toxins from the venom of the common tiger snake (Notechis scutatus scutatus). Toxicon. 29 (1), 85-96 (1991).
  34. Navarro, K. a. e. l. a. L., Monika Huss, ., Smith, J. e. n. n. i. f. e. r. C., Patrick Sharp, . . James O Marx, Cholawat Pacharinsak, Mouse Anesthesia: The Art and Science, ILAR Journal. 62, 1-2 (2021).
  35. Langford, D., Bailey, A., Chanda, M., et al. Coding of facial expressions of pain in the laboratory mouse. Nat Methods. 7, 447 (2010).
  36. Matsumiya LC, ., Sorge RE, . Sotocinal SG, Tabaka JM, Wieskopf JS, Zaloum A, King OD, Mogil JS. Using the Mouse Grimace Scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. J Am Assoc Lab Anim Sci. 2012 (1), 42-49 (2012).
  37. Gonzalez, V. D., et al. High-grade serous ovarian tumor cells modulate NK cell function to create an immune-tolerant microenvironment. Cell Rep. 36 (9), 109632 (2021).
  38. Delgado-Gonzalez, A., et al. Measuring trogocytosis between ovarian tumor and natural killer cells. STAR Protoc. 3 (2), 101425 (2022).
  39. Finck, R., et al. Normalization of mass cytometry data with bead standards. Cytometry Part A. 83 (5), 483-494 (2013).
  40. Leipold, M. D., Maecker, H. T. Mass cytometry: protocol for daily tuning and running cell samples on a CyTOF mass cytometer. J Vis Exp. 69, (2012).
  41. McCarthy, R. L., Duncan, A. D., Barton, M. C. Sample preparation for mass cytometry analysis. J Vis Exp. 122, 54394 (2017).
  42. Kotecha, N., Krutzik, P. O., Irish, J. M. Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom. Chapter 10., Uni10.17. , (2010).
  43. Fienberg, H. G., Simonds, E. F., Fantl, W. J., Nolan, G. P., Bodenmiller, B. A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry Part A. 81 (6), 467-475 (2012).
  44. Kimball, A. K., et al. A beginner's guide to analyzing and visualizing mass cytometry data. J Immunol. 200 (1), 3-22 (2018).
  45. Weber, L. M., Robinson, M. D. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry Part A. 89 (12), 1084-1096 (2016).
  46. Samusik, N., Good, Z., Spitzer, M. H., Davis, K. L., Nolan, G. P. Automated mapping of phenotype space with single-cell data. Nat Methods. 13 (6), 493-496 (2016).
  47. Ornatsky, O. I., et al. Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal Chem. 80 (7), 2539-2547 (2008).
  48. Relaix, F., et al. Perspectives on skeletal muscle stem cells. Nat Commun. 12 (1), 692 (2021).
  49. de Morree, A., et al. Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci U S A. 114 (43), E8996-E9005 (2017).
  50. Luo, D., et al. Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci U S A. 114 (15), E3071-E3080 (2017).
  51. Wersto, R. P., et al. Doublet discrimination in DNA cell-cycle analysis. Cytometry. 46 (5), 296-306 (2001).
  52. Porpiglia, E., Blau, H. M. Plasticity of muscle stem cells in homeostasis and aging. Curr Opin Genet Dev. 77, 101999 (2022).
  53. Porpiglia, E., et al. Elevated CD47 is a hallmark of dysfunctional aged muscle stem cells that can be targeted to augment regeneration. Cell Stem Cell. 29 (12), 1653-1668 (2022).
  54. Brunet, A., Goodell, M. A., Rando, T. A. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol. 24 (1), 45-62 (2022).
  55. Danielli, S. G., et al. Single-cell profiling of alveolar rhabdomyosarcoma reveals RAS pathway inhibitors as cell-fate hijackers with therapeutic relevance. Sci Adv. 9 (6), (2023).
  56. de Morree, A., Rando, T. A. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol. 24 (5), 334-354 (2023).
  57. Yucel, N., et al. Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep. 27 (13), 3939-3955 (2019).
  58. Tierney, M. T., Sacco, A. Inducing and evaluating skeletal muscle injury by notexin and barium chloride. Methods Mol Biol. 1460, 53-60 (2016).
  59. Hardy, D., et al. Comparative study of injury models for studying muscle regeneration in mice. PLoS One. 11 (1), (2016).
  60. Call, J. A., Lowe, D. A. Eccentric contraction-induced muscle injury: Reproducible, quantitative, physiological models to impair skeletal muscle's capacity to generate force. Methods Mol Biol. 1460, 3-18 (2016).
  61. Garry, G. A., Antony, M. L., Garry, D. J. Cardiotoxin Induced Injury and Skeletal Muscle Regeneration. Methods Mol Biol. 1460, 61-71 (2016).
  62. Le, G., Kyba Lowe, D. A., M, Freeze injury of the tibialis anterior muscle. Methods Mol Biol. 1460, 33-41 (2016).
  63. Borok, M., et al. Progressive and coordinated mobilization of the skeletal muscle niche throughout tissue repair revealed by single-cell proteomic analysis. Cells. 10 (4), (2021).
  64. Petrilli, L. L., et al. High-dimensional single-cell quantitative profiling of skeletal muscle cell population dynamics during regeneration. Cells. 9 (7), 1723 (2020).
  65. Giordani, L., et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Mol Cell. 74 (3), 609-621 (2019).
  66. Hartmann, F. J., et al. Scalable conjugation and characterization of immunoglobulins with stable mass isotope reporters for single-cell mass cytometry analysis. Methods Mol Biol. , 55-81 (1989).
  67. Frimand, Z., Das Barman, ., Kjær, S., R, T., Porpiglia, E., de Morrée, A. Isolation of quiescent stem cell populations from individual skeletal muscles. J Vis Exp. 190, 64557 (2022).
  68. Krutzik, P. O., Nolan, G. P. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A. 55 (2), 61-70 (2003).
  69. Bodenmiller, B., et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 30 (9), 858-867 (2012).
  70. Schulz, K. R., Danna, E. A., Krutzik, P. O., Nolan, G. P. Single-cell phospho-protein analysis by flow cytometry. Curr Protoc Immunol. Chapter. 8, 11-18 (2012).
  71. Krutzik, P. O., Clutter, M. R., Nolan, G. P. Coordinate analysis of murine immune cell surface markers and intracellular phosphoproteins by flow cytometry. J Immunol. 175 (4), 2357-2365 (2005).
  72. Krutzik, P. O., Irish, J. M., Nolan, G. P., Perez, O. D. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol. 110 (3), 206-221 (2004).
  73. Han, G., Spitzer, M. H., Bendall, S. C., Fantl, W. J., Nolan, G. P. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat Protoc. 13 (10), 2121-2148 (2018).
  74. Chevrier, S., et al. Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 6 (5), 612-620 (2018).
  75. Bjornson, Z. B., Nolan, G. P., Fantl, W. J. Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol. 25 (4), 484-494 (2013).
  76. Kalina, T., Lundsten, K., Engel, P. Relevance of antibody validation for flow cytometry. Cytometry A. 97 (2), 126-136 (2020).
  77. Baumgarth, N., Roederer, M. A practical approach to multicolor flow cytometry for immunophenotyping. J Immunol Methods. 243 (1-2), 77-97 (2000).
  78. Roederer, M. Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry. 45 (3), 194-205 (2001).
  79. Tung, J. W., Parks, D. R., Moore, W. A., Herzenberg, L. A., Herzenberg, L. A. New approaches to fluorescence compensation and visualization of FACS data. Clin Immunol. 110 (3), 277-283 (2004).
  80. Cossarizza, A., et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol. 51 (12), 2708-3145 (2021).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved