In vivo fast photochemical oxidation of proteins (IV-FPOP) is a hydroxyl radical protein footprinting technique that allows for mapping of protein structure in their native environment. This protocol describes the assembly and set-up of the IV-FPOP microfluidic flow system.
Here, we characterize protein structure and interaction sites in living cells using a protein footprinting technique termed in-cell fast photochemical oxidation of proteins (IC-FPOP).
This protocol presents a method to use inline radical dosimetry and a plasma light source to perform flash oxidation protein footprinting. This method replaces the hazardous UV laser to simplify and improve the reproducibility of fast photochemical oxidation of protein studies.
A new static platform is used to characterize protein structure and interaction sites in the native cell environment utilizing a protein footprinting technique called in-cell fast photochemical oxidation of proteins (IC-FPOP).