A demonstration of the isolation of neonatal mouse spinal cord for electrophysiologic studies.
We will demonstrate how to study the effect of a single point mutation on the function of an ion channel.
This method describes the generation of organotypic cerebellar cultures and the effect of certain apoptotic stimuli on the viability of different cerebellar cell types.
A demonstration of the fabrication and use of an extracellular suction electrode used to measure electrophysiological recordings of neonatal rodent spinal cords in vitro
We describe here a method for biopsying olfactory mucosa from rat and human nasal cavities. These biopsies can be used for either identifying molecular anomalies in brain diseases or isolating multipotent adult stem cells that can be utilized for cell transplantation in animal models of brain trauma/disease.
We present a protocol to create cell-based neurotransmitter fluorescent engineered reporters (CNiFERs) for the optical detection of volumetric neurotransmitter release.
Here, a procedure to selectively activate a neuronal protein with a short pulse of light by genetically encoding a photo-reactive unnatural amino acid into a target neuronal protein expressed in neurons in culture or in vivo is presented.
Neuronal cultures are a good model for studying emerging brain stimulation techniques via their effect on single neurons or a population of neurons. Presented here are different methods for stimulation of patterned neuronal cultures by an electric field produced directly by bath electrodes or induced by a time-varying magnetic field.
The present protocol describes a generalized and easy-to-implement scheme for tilted single-particle data collection in cryo-EM experiments. Such a procedure is especially useful for obtaining a high-quality EM map for samples suffering from preferential orientation bias due to adherence to the air-water interface.
Nous utilisons des cookies afin d'améliorer votre expérience sur notre site web.
En continuant à utiliser notre site ou en cliquant sur le bouton ''continuer'', vous acceptez l'utilisation de cookies.