S'identifier

Nationwide Children’s Hospital

6 ARTICLES PUBLISHED IN JoVE

image

Medicine

Implantation of Inferior Vena Cava Interposition Graft in Mouse Model
Yong-Ung Lee 1, Tai Yi 1, Shuhei Tara 1, Avione Y. Lee 1, Narutoshi Hibino 1, Toshiharu Shinoka 2, Christopher K. Breuer 1,3
1Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, 2Department of Cardiothoracic Surgery, Nationwide Children's Hospital, 3Pediatric Surgery, Nationwide Children's Hospital

To improve our knowledge of cellular and molecular neotissue formation, a murine model of the TEVG was recently developed. The grafts were implanted as infrarenal vena cava interposition grafts in C57BL/6 mice. This model achieves similar results to those achieved in our clinical investigation, but over a far shortened time-course.

image

Medicine

Transplantation of Pulmonary Valve Using a Mouse Model of Heterotopic Heart Transplantation
Yong-Ung Lee 1, Tai Yi 1, Iyore James 1, Shuhei Tara 1, Alexander J. Stuber 1, Kejal V. Shah 1, Avione Y. Lee 1, Tadahisa Sugiura 1, Narutoshi Hibino 2, Toshiharu Shinoka 1, Christopher K. Breuer 1,3
1Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, 2Cardiothoracic Surgery, Nationwide Children's Hospital, 3Pediatric Surgery, Nationwide Children's Hospital

In order to understand the cellular and molecular mechanisms underlying neotissue formation and stenosis development in tissue engineered heart valves, a murine model of heterotopic heart valve transplantation was developed. A pulmonary heart valve was transplanted to recipient using the heterotopic heart transplantation technique.

image

Genetics

Direct Reprogramming of Human Fibroblasts into Myoblasts to Investigate Therapies for Neuromuscular Disorders
Camila F. Almeida 1, Emma C. Frair 1, Nianyuan Huang 1, Reid Neinast 2, Kim L. McBride 2,3,4,6, Robert B. Weiss 5, Kevin M. Flanigan 1,6, Nicolas Wein 1,6
1Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 2Center for Cardiovascular Research, The Research Institute at Nationwide Children’s Hospital, 3The Heart Center, Nationwide Children’s Hospital, 4Division of Genetic and Genomic Medicine, Nationwide Children’s Hospital, 5Department of Human Genetics, The University of Utah School of Medicine, 6Department of Pediatrics, The Ohio State University

This protocol describes the conversion of skin fibroblasts into myoblasts and their differentiation into myotubes. The cell lines are derived from patients with neuromuscular disorders and can be used to investigate pathological mechanisms and to test therapeutic strategies.

image

Developmental Biology

Generation and Expansion of Human Cardiomyocytes from Patient Peripheral Blood Mononuclear Cells
Shiqiao Ye 1,2, Xiaoping Wan 3, Juan Su 1,2, Akshar Patel 1,2,4, Blake Justis 1,2,5, Isabelle Deschênes 3, Ming-Tao Zhao 1,2,5,6
1Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, 2The Heart Center, Nationwide Children’s Hospital, 3Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 4Department of Anatomy, The Ohio State University College of Medicine, 5MCDB Graduate Program, The Ohio State University, 6Department of Pediatrics, The Ohio State University College of Medicine

Here, we present a protocol to robustly generate and expand human cardiomyocytes from patient peripheral blood mononuclear cells.

image

Engineering

Surgery and Sample Processing for Correlative Imaging of the Murine Pulmonary Valve
Yifei Liu 1, Yong-Ung Lee 2, Tai Yi 2, Ken Wu 3, Cedric Bouchet-Marquis 3, Han Chan 3, Christopher K. Breuer 2, David W. McComb 1
1Center for Electron Microscopy and Analysis, The Department of Materials Science and Engineering, Ohio State University, 2Center for Regenerative Medicine, Nationwide Children’s Hospital, 3Thermo Fisher Scientific

Here, we describe a correlative workflow for the excision, pressurization, fixation, and imaging of the murine pulmonary valve to determine the gross conformation and local extracellular matrix structures.

image

Medicine

Successful Orthotopic Liver Transplantation in Mice Utilizing Microcomputed Tomography Angiography
Qiang Zeng 1, Doug A. Gouchoe 2,3, Mahboubeh Nabavinia 4, Yong Gyu Lee 2, Xi Wang 2, Terri A. Shaffer 5, Mitchel R. Stacy 4,5,6, Blake R. Peterson 7,8, Bryan A. Whitson 2,9, Christopher Breuer 1,4, Sylvester M. Black 1,10
1Department of Surgery, Nationwide Children’s Hospital, 2COPPER Laboratory, The Ohio State University, 388th Surgical Operation Operations Squadron, WPAFB, 4Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, 5Division of Vascular Diseases and Surgery, The Ohio State University College of Medicine, 6Interdisciplinary Biophysics Graduate Program, The Ohio State University, 7Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, 8The Ohio State University Comprehensive Cancer Center, 9Division of Cardiac Surgery, Department of Surgery, The Ohio State Wexner Medical Center, 10Division of Transplantation, Department of Surgery, The Ohio State Wexner Medical Center

In this protocol, we discuss the implementation of a model of successful orthotopic liver transplantation (OLT) in mice. Additionally, adjuvants to further analyze allograft patency after successful OLT in a mouse are discussed as well, specifically utilizing microcomputed tomography (microCT) scans.

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2024 MyJoVE Corporation. Tous droits réservés.