S'identifier

Chapter 25

Deflection of Beams

Déformation d’une poutre sous charge transversale
Déformation d’une poutre sous charge transversale
A crucial component in the design of beams is the identification and measurement of deflection. A comprehensive understanding of deflections is necessary ...
Équation de la courbe élastique
Équation de la courbe élastique
The plane curve's curvature at a point on the curve can be expressed using an expression involving the curve's first and second derivatives. The ...
Courbe élastique à partir de la répartition de la charge
Courbe élastique à partir de la répartition de la charge
When a beam carries a distributed load, the shear force and bending moment at any point on the beam can be expressed in a differential form. A third-order ...
Déviation d’une poutre
Déviation d’une poutre
The deflection of a beam in a roof structure can be determined using the integration method, provided that a single analytical function can represent the ...
Méthode de superposition
Méthode de superposition
The method of superposition is used in structural engineering to calculate the slope and deflection of beams subjected to multiple loads. When a beam ...
Théorèmes moment-aire
Théorèmes moment-aire
The moment-area theorem provides geometric properties of an elastic curve for determining deflection and slope at any point on the beam supporting a ...
Poutres avec charges symétriques
Poutres avec charges symétriques
The Moment-area method can be implemented on a cantilever beam under a concentrated load and moment to identify the slope and deflection. The process ...
Poutres à charges asymétriques
Poutres à charges asymétriques
Analyzing a supported beam under unsymmetrical loadings requires a reference tangent with a known slope to identify the level point. The slope of the ...
Déflexion maximale
Déflexion maximale
Consider a train moving on a bridge. Here, an unsymmetrical load is applied to a supported beam where the maximum deflection doesn't usually occur in ...
JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.